B. Stahl, M. Karas, F. Hillenkamp, C. Carstensen and M. Steup

Analysis of Glycan and Glycoconjugates by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS)

Introduced in 1986, Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) has become a rapidly expanding method. A matrix of highly absorbing organic molecules isolates the analytes and enables the desorption and ionization of intact biomolecules up to a MW of 500,000 Da (1, 2). The ions generated by the irradiation of pulsed (3-200 ns) UV- or IR-lasers are separated in a time of flight system. For proteins the limit of detection is in the low femtogram range.

In this contribution, the following examples for glycan/glycoconjugates analysis by MALDI-MS will be presented:

- native non-derivated α-1,4-glucans
- fructans
- native and permethylated glycosphingolipids
- glycoproteins before and after enzymatic deglycosylation
- glycopeptides with a varying degree of polymerization
- characterisation of an enzymatic glucan polymerisation
- characterisation of a non-enzymatic hydrolysis of a heteropolysaccharide

The data presented here clearly show that MALDI-MS is a new and attractive alternative to standard biochemical and biophysical methods. MALDI-MS has distinct advantages such as high sensitivity, high accuracy and fast sample preparation. The time required for complete analysis is typically 10–15 minutes.

B. Stahl, M. Karas and F. Hillenkamp
Institute for Medical Physics and Biophysics, University of Münster, Robert-Koch-Straße 31, W-4400 Münster, FRG

C. Carstensen and M. Steup
Institute for Botany, University of Münster, Schlossgarten 3, W-4400 Münster, FRG

E. Stahl, M. Karas, F. Hillenkamp, C. Carstensen and M. Steup

Analysis of Glycan and Glycoconjugates by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS)

Introduced in 1986, Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) has become a rapidly expanding method. A matrix of highly absorbing organic molecules isolates the analytes and enables the desorption and ionization of intact biomolecules up to a MW of 500,000 Da (1, 2). The ions generated by the irradiation of pulsed (3-200 ns) UV- or IR-lasers are separated in a time of flight system. For proteins the limit of detection is in the low femtogram range.

In this contribution, the following examples for glycan/glycoconjugates analysis by MALDI-MS will be presented:

- native non-derivated α-1,4-glucans
- fructans
- native and permethylated glycosphingolipids
- glycoproteins before and after enzymatic deglycosylation
- glycopeptides with a varying degree of polymerization
- characterisation of an enzymatic glucan polymerisation
- characterisation of a non-enzymatic hydrolysis of a heteropolysaccharide

The data presented here clearly show that MALDI-MS is a new and attractive alternative to standard biochemical and biophysical methods. MALDI-MS has distinct advantages such as high sensitivity, high accuracy and fast sample preparation. The time required for complete analysis is typically 10–15 minutes.

B. Stahl, M. Karas and F. Hillenkamp
Institute for Medical Physics and Biophysics, University of Münster, Robert-Koch-Straße 31, W-4400 Münster, FRG

C. Carstensen and M. Steup
Institute for Botany, University of Münster, Schlossgarten 3, W-4400 Münster, FRG

Structural characterisation of gangliosides from B cell derived cell lines

Activated murine T and B cells as well as tumour cell lines of T and B cell origin express different sets of glycosphingolipids (GSLs) (1). Gangliosides of the Ga2p-pathway were characterized as T cell specific antigens (2) and are also expressed by the T lymphoma YAC-1 (3). B cell derived cell lines (myeloma, hybridoma) show simple ganglioside patterns in contrast to T cell derivatives (4), but no detailed data of GSL-structures from B cells and related tumours are available.

In this study the gangliosides from various mouse myelomas and hybridomas (mouse-mouse, mouse-rat, human-mouse) and a human Epstein-Barr-virus (EBV) transformed B lymphocyte cell line have been characterized by immunological methods (overlay technique) and fast atom bombardment mass spectrometry (FAB-MS) (5). Sialic acid profiles were obtained by HPLC according to Hara et al. (6).

Exclusively Ga2 (Cerpd1 and C18:1 fatty acid) was expressed by all cell lines. Using highly specific polyclonal chicken antibodies directed to Sialo-3Gal, all mouse-derived lines showed characteristic high Ga2 (NeuGc) and low Ga3 (NeuAc) content whereas the human EBV transformed B lymphocyte was characterized by Ga3 (NeuAc), completely lacking Ga2 (NeuGc).

In gangliosides from normal human cells NeuGc is not expressed (7). We found that the analysed EBV-transformed human B lymphocyte retained this sialylation status by expressing exclusively Ga3 (NeuAc) (100%). The fusion of a human B lymphocyte with a mouse myeloma, however, led to a heterobioside with high Ga2 (NeuGc) content (94%). This synthesis shift may be caused by transfer of the hydrolase gene coding for CMP-NeuAc hydroxylase activity.

B. Striepen, S. Tomewo, J.-F. Dubremetz and R.T. Schwarz

Characterisation of Glycophospholipids in Toxoplasma gondii

Toxoplasma gondii, a sporozoan parasite, is the causative agent of toxoplasmosis. Using human sera previous studies have described a lipophilic low molecular weight antigen. We have produced monoclonal antibodies specific for this antigen for further characterisation. Parasites were metabolically labeled with [3H]mannose and several [3H]-fatty acids. Incorporation of [3H]-amino acids was not observed for any of these peaks, whereas three glycolipids (I-III) were labeled with [3H]-ethanolamine. Bands stained immunologically by mAbs and patient sera coincided with radioactive peaks. Human sera (IgM) stained all glycolipids with exception of peak III, mAbs recognized peak I and III.

Glycolipids...