A MODULE THEORETICAL INTERPRETATION OF
PROPERTIES OF THE ROOT SYSTEMS

Vlastimil Dlab
Carleton University
Ottawa, Canada

and

Claus Michael Ringel
Universität Bielefeld
Federal Republic of Germany

1. INTRODUCTION

There has been a great interest in the root systems lately, since they arise in rather different mathematical problems: their properties seem to reflect many features of the corresponding objects and imply nontrivial consequences. Recall that a root system (see e.g. [2]) is just a set of vectors in the real euclidean $n$-space $\mathbb{R}^n$ satisfying certain strong symmetry and integrality conditions, and that the indecomposable ones can be classified by the Dynkin diagrams

\[ \begin{align*}
A_n & \quad \circ - - - - - - - - - - - - - \circ \quad n \geq 1, \\
B_n & \quad (1,2) \quad \circ - - - - - - - \circ \quad n \geq 2, \\
C_n & \quad (2,1) \quad \circ - - - - - - - \circ \quad n \geq 3,
\end{align*} \]

*Supported in part by National Research Council of Canada, Grant No. A-7257.
These diagrams are obtained from the corresponding root system by choosing an appropriate basis; the choice of such a basis is unique up to symmetry. Having fixed a basis, every root is an integral linear combination of the basis vectors with either only non-negative, or only non-positive coefficients. Well known properties of the root systems include, in particular, the summation property which asserts that, having a root \( \alpha \) which is a sum \( \alpha = \sum_{t=1}^{d} \alpha_t \) of the positive roots \( \alpha_t \), there is a permutation \( \pi \) of \( \{1, 2, \ldots, d\} \) so that \( \sum_{t=1}^{d'} \alpha_{\pi(t)} \) is a root for every \( 1 \leq d' \leq d \). Another property of the root systems is the existence of the largest root. In this paper, we shall interpret both these features in a module theoretical manner.

It has been shown in [4] that the Dynkin diagrams can be characterized as those (connected) valued graphs whose category of (finite dimensional) representations is of finite representation type (i.e. has a finite number
of non-isomorphic indecomposable representations). Recall that a
representation of a valued graph Γ requires a choice of an orientation
and a modulation \( M = (F_i, i_i M_j) \) of Γ; here, for each vertex \( i \) of Γ,
\( F_i \) are division rings and, for each arrow \( i \to j \) of Γ, \( i_i M_j \) are (finite
dimensional) \( F_i - F_j \)-bimodules. We assume that a central field \( K \) exists
such that \( [F_i : K] < \infty \) for all \( i \) and that \( K \) acts centrally on \( i_i M_j \).
The representations \( X = (X_i, j^i_j) \), where \( \psi_x : X_i \otimes i_i M_j \to X_j \) for each
\( i \to j \) (or, alternatively, \( X = (X_i, j^i_j) \), where \( \psi_x : X_i \oplus X_j \otimes j^i_j \)
\( j^i_j = \text{Hom}_{F_j} (M_j, F_j) \) for each \( i \to j \)) form an abelian category which is
equivalent to the category of all (right, finite dimensional) modules over
the (hereditary) tensor K-algebra defined by the semisimple K-algebra
\( \Lambda = \bigotimes_i F_i \) and the \( \Lambda \)-module \( \bigoplus_{i \to j} i_i M_j \). The (basic indecomposable)
hereditary K-algebras of finite representation type are precisely the
tensor K-algebras over the Dynkin diagrams [3]. Hence, the entire theory
of representations of Dynkin diagrams can be interpreted as the theory of
modules over hereditary algebras \( \Lambda \) of finite representation type. Since
there is a one-to-one correspondence between the indecomposable modules
over \( \Lambda \) and the positive roots of the corresponding Dynkin diagram
(induced by the "dimension type" map \( \dim : X \to \dim X = (\dim X_i)_{i \in \Gamma} \) into
the Grothendieck group of \( \text{mod} \ \Lambda \)) [4] and since there are no infinite
dimensional indecomposable modules [5], the structure of \( \text{mod} \ \Lambda \) is largely
determined by the corresponding diagram alone.
Of course, [4] provides further information on the structure of modules, such as ordering of the indecomposable modules

\[ X_1 = I_1, X_2 = I_2, \ldots, X_n = I_n, X_{n+1} = C^+ I_1, X_{n+2} = C^+ I_2, \ldots \]

in the way that \( I_1, I_2, \ldots, I_n \) are all indecomposable injective modules satisfying \( \text{Hom}(I_p, I_q) = 0 \) for all \( p < q \leq n \) (and thus \( \text{Hom}(X_p, X_q) = 0 \) for all \( p < q \)); here, \( C^+ \) denotes the Coxeter functions of [4]. It follows that the endomorphism algebra \( E = \text{End}_{\bigoplus_p X_p} \) of the direct sum of all indecomposable modules has a (lower) triangular matrix representation. The sequence of \( X_p \)'s also defines an order in which a given module can be split into a direct sum of its indecomposable components.

The results of this paper complete the knowledge of these module categories by describing certain composition series (and consequently also homomorphisms). The module theoretical interpretation of properties of the root systems mentioned earlier is then established as follows: Given a Dynkin diagram, its positive roots can be interpreted as the indecomposable modules over an appropriate hereditary algebra, and in this way, we can assign a module theoretical meaning to the summation property of the roots systems; the largest positive root corresponds to the largest indecomposable module, which contains every other indecomposable module as a subfactor, that is as a quotient of a submodule.
Interpretations of the root systems

2. MAIN RESULTS

Let A be a basic hereditary K-algebra of finite representation type, \( \Gamma = \Gamma(A) \) its oriented (Dynkin) diagram, \( A/\text{Rad } A = \prod_{i \in \Gamma} F_i \) and
\[ \text{Rad } A/(\text{Rad } A)^2 = \bigoplus_{i \neq j} F_i M_{ij} \]. Throughout this section, assume that \( K \) is infinite.

**Lemma.** Let \( k \in \Gamma \) be a source and \( X, Z \) indecomposable \( A \)-modules satisfying
\[ \dim Z = \dim X + \dim F_k \],
where \( F_k \) is the simple \( A \)-module corresponding to the vertex \( k \). Then there is a short exact sequence
\[ 0 \to X \to Z \to F_k \to 0 \].

**Proof.** Let \( X = (X_i, j_i^*) \) with
\[ j_i^* : X_i \to X_j \otimes j_{ij}^* \], \( j_{ij} = \text{Hom}(M_j, F_i) \) for each \( i \to j \),
and similarly \( Z = (Z_i, j_i^*) \) be the representations of the graph \( \Gamma \) corresponding to the modules \( X \) and \( Z \), respectively. Write \( \dim F_i \dim X_i = x_i \) and \( \dim F_i \dim Z_i = z_i \).

Consider the affine variety
\[ V = \{ V \in \prod_{i \to j} \text{Hom}_{F_i} (F_i, F_j \otimes j_{ij}^*) \} \]
with the group action given by
\[ G = \prod_{i} \text{GL}(x_i, F_i) \]
as follows:

\[(g_i) \cdot (j_i \omega_i) = ((g_j \otimes 1) x_i j_i \omega_i g_i^{-1})\]

with \(g_i \in \text{GL}(x_i, F_i)\) and \(j_i \omega_i \in \text{Hom}_{F_i}(F_i^x, F_j^x \otimes j_i M_i)\). Thus the isomorphism class of \(X\) corresponds to an orbit \(\mathcal{D}_X\) in \(\mathcal{V}\). Since \(X\) is indecomposable, its orbit is open (and therefore also dense). For, there is only a finite number of orbits and one can verify that the dimension of the stabilizer of any element of \(\mathcal{D}_X\) (which is equal to \(\dim_{\text{End} X}\)), is the smallest possible. Indeed, this is trivial if there is only one field involved or if \(\text{End} X\) is the smaller field \(G\) of the two fields \(G \subset F\) involved; if \(\text{End} X = F\) and \([F:G] = 2\), then every other orbit in \(\mathcal{V}\) corresponds to a decomposable module, whose stabilizer dimension is therefore \(\geq \dim_{\text{End} X}\); finally, if \([F:G] = 3\), there is a nontrivial homomorphism between any two indecomposable modules with the endomorphism rings equal to \(G\), and thus again, the \(K\)-dimension of the endomorphism ring of any decomposable module is \(\geq 3 \dim_{\text{End} X}\).

Now, consider the projection of \(\mathcal{V}\)

\[\mathcal{P}_k: \mathcal{V} \rightarrow \psi^k = \prod_{i + j = k} \text{Hom}_{F_i}(F_i^x, F_j^x \otimes j_i M_i);\]

the orbit \(\mathcal{D}_X\) is mapped onto

\[\mathcal{D}_X' = \{(j_i \omega_i)_{i \neq k} | (j_i \omega_i) \in \mathcal{D}_X\}\]

corresponding to the restriction \((X_i, j_i \omega_i)_{i \neq k}\) of \(X\) to the graph \(\Gamma \setminus \{k\}\).

It follows that \(\mathcal{D}_X'\) is dense and contains an open subset in \(\psi^k\) (in fact,
Interpretations of the root systems

it is open and dense in \( \mathcal{V}_k \).

For the indecomposable module \( Z \), the same conclusions hold as for \( X \); in particular, the orbit \( \mathcal{D}_Z' \) is dense in \( \mathcal{V}_k \). Thus,

\[
\mathcal{D}_X' \cap \mathcal{D}_Z' \neq \emptyset,
\]

and therefore there are representations

\[
X' = (x_i', j_i') \in \mathcal{D}_X' \quad \text{and} \quad Z' = (z_i', j_i') \in \mathcal{D}_Z',
\]

such that

\[
j_i'^t = j_i'^t \quad \text{for all} \quad i \neq k \quad \text{and all} \quad j.
\]

Now, let \( W = \bigoplus_{k+j} (P_j^X \otimes j)^{x_j} \), and denote by \( F \) the flag variety of \( \mathbb{F}_k \)-spaces

\[
F = \{ U \subseteq V \subseteq W | \dim U = x_k, \dim V = x_k + 1 \}
\]

with the group

\[
G' = \{ (g_i) \in \prod_{k+j} \text{GL}(x_j, F_j) | g \in G \quad \text{such that} \}
\]

\[
j_i'^t g_i = (g_j \otimes 1) j_i'^t \quad \text{for all} \quad i \neq k \quad \text{and all} \quad j
\]

acting on \( W \) canonically. Denote by \( p_X' \), and \( p_Z' \), the canonical projections of \( F \) to the Grassmann varieties \( Gr_U \) and \( Gr_V \)

\[
p_X' : F \to Gr_U = \{ U \subseteq W | \dim U = x_k \},
\]

\[
p_Z' : F \to Gr_V = \{ V \subseteq W | \dim V = x_k + 1 = x_k \}.
\]
and note that \( G' \) acts again on both \( Gr_U \) and \( Gr_V \). Viewing \( Gr_U \) as a subvariety of the projection

\[
\prod \text{Hom}_k \left( F_{j_k}^{X_k}, F_{j_k}^{X_j} \otimes M_k \right) \text{ of } U,
\]

we conclude that the orbit \( D'_{X'} \) of \( X'_k \subseteq W \) is open (and thus dense) in \( Gr_U \). Similarly, the orbit \( D'_{Z'} \) of \( Z'_k \subseteq W \) is open and dense in \( Gr_V \). Therefore the proimages \( F_{X'}^{-1}(D'_{X'}) \) and \( F_{Z'}^{-1}(D'_{Z'}) \) have the same properties, and consequently

\[
F^{-1}_{X'}(D'_{X'}) \cap F^{-1}_{Z'}(D'_{Z'}) \neq \emptyset.
\]

Hence there are monomorphisms

\[
F_{X_k}^{X_k} \cong F_{X_k}^{X_k+1} \cong W,
\]

so that, denoting the canonical projection \( W \rightarrow F_j^{X_j} \otimes M_k \) by \( j_{F_k}^{X_k} \), the representation

\[
X'' = (F_i^X, j_i^X) \text{ with } j_i^X = j_{F_k}^{X_k} \alpha \text{ and } j_i^X = j_i^X
\]

otherwise, belongs to \( D_X \). Similarly,

\[
Z'' = (F_i^Z, j_i^Z) \text{ with } j_i^Z = j_{F_k}^{X_k} \beta \text{ and } j_i^Z = j_i^Z
\]

otherwise, belongs to \( D_Z \). Consequently, we get an embedding \( X'' \rightarrow Z'' \) for the corresponding modules and

\[
X \cong X'' \rightarrow Z'' \cong Z
\]

yields a monomorphism from \( X \) to \( Z \). This proves the lemma.
REMARK. One can prove also the dual statement: Let \( k \in \Gamma \) be a sink and \( Y, Z \) indecomposable \( \kappa \)-modules satisfying \( \dim Z = \dim Y + \dim F_k \). Then there exists an exact sequence

\[
0 \rightarrow F_k \rightarrow Z + Y \rightarrow 0.
\]

PROPOSITION. Let \( X, Y \) and \( Z \) be indecomposable \( \kappa \)-modules satisfying

\[
\dim Z = \dim X + \dim Y.
\]

Then there exists an exact sequence

\[
0 \rightarrow X \rightarrow Z + Y \rightarrow 0 \text{ or } 0 \rightarrow Y \rightarrow Z + X \rightarrow 0.
\]

Proof. We apply the functors \( S_i^- \) of [4] for suitable \( i \)'s to the modules \( X \) and \( Y \), so that the image of one of them is simple injective \( A' \)-module (\( A' \) is the \( K \)-algebra corresponding to the new orientation!) whilst the other image is nonzero. Assume, without loss of generality that

\[
S_i^- \ldots S_i^- Y = F_k \quad \text{and} \quad S_i^- \ldots S_i^- X = X' \neq 0.
\]

Thus, also \( S_i^- \ldots S_i^- Z = Z' \neq 0 \) and

\[
\dim Z' = \dim X' + \dim F_k.
\]

Consequently, Lemma yields an exact sequence

\[
0 \rightarrow X' \rightarrow Z' + F_k \rightarrow 0,
\]

and, applying to it the functor \( S_i^+ \ldots S_i^+ \), we get the required statement.
As an immediate consequence of the proposition one gets by induction, using the summation property of the root systems, the following

**THEOREM.** Let \( x_1, x_2, \ldots, x_d \) and \( Z \) be indecomposable modules over a hereditary algebra \( A \) of finite representation type, such that

\[
\dim Z = \sum_{t=1}^{d} \dim x_t.
\]

Then there is a sequence

\[
0 = Z_0 \subset Z_1 \subset \cdots \subset Z_d = Z
\]

of submodules of \( Z \) and a permutation \( \pi \) of \( \{1, 2, \ldots, d\} \) such that

\[
Z_t/Z_{t-1} \cong x_{\pi(t)} \quad \text{for all } 1 \leq t \leq d;
\]

moreover, there is a sequence

\[
0 = k_1 \leq k_2 \leq \cdots \leq k_{d-1} \leq k_d < l_d \leq l_{d-1} \leq \cdots \leq l_2 \leq l_1 = d
\]

such that all \( Z_{k_t}/Z_{k_{t-1}} \), \( 1 \leq t \leq d \), are indecomposable.

Thus, in particular, we have

**COROLLARY 1.** Every indecomposable \( A \)-module \( Z \) has a composition series

\[(*)\quad 0 = Z_0 \subset Z_1 \subset \cdots \subset Z_d = Z\]

and a sequence

\[(**\quad 0 = k_1 \leq k_2 \leq \cdots \leq k_{d-1} \leq k_d < l_d \leq l_{d-1} \leq \cdots \leq l_2 \leq l_1 = d\]
such that, for every \( 1 \leq t \leq d \), \( \mathbb{Z}_t / \mathbb{Z}_{k_t} \) is an indecomposable \( \mathbb{A} \)-module of length \( t \).

**Corollary 2.** Let \( \mathbb{Z} \) be the largest indecomposable \( \mathbb{A} \)-module. Then, for every indecomposable \( \mathbb{A} \)-module \( \mathbb{X} \), there exist a composition series \((*)\) of \( \mathbb{Z} \) and a sequence \((**)*\) such that all \( \mathbb{Z}_{k_t} / \mathbb{Z}_{k_t} \) are indecomposable \( \mathbb{A} \)-modules and
\[
\mathbb{X} \cong \mathbb{Z}_{k_t} / \mathbb{Z}_{k_t}, \text{ for a suitable } t'.
\]

3. REMARKS AND EXAMPLES

Note that in case of the finite field \( \mathbb{F}_2 \) of two elements, the results of Section 2 may not hold. Consider, for example, the algebra
\[
A_1 = \begin{pmatrix}
\mathbb{Z}_2 & 0 & 0 & \mathbb{Z}_2 \\
0 & \mathbb{Z}_2 & 0 & \mathbb{Z}_2 \\
0 & 0 & \mathbb{Z}_2 & \mathbb{Z}_2 \\
0 & 0 & 0 & \mathbb{Z}_2
\end{pmatrix}
\]

and the following (right) \( A_1 \)-modules (the graph of \( A_1 \) is \( 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \)):

the indecomposable injective module \( \mathbb{X} = (\mathbb{Z}_2 \mathbb{Z}_2 \mathbb{Z}_2 \mathbb{Z}_2) \) corresponding to the last row, and the largest indecomposable module
\[
\mathbb{Z} = (\mathbb{Z}_2 \oplus 0 \oplus \mathbb{Z}_2 \oplus (1,1) \mathbb{Z}_2 \mathbb{Z}_2 \oplus \mathbb{Z}_2).
\]

Then \( \mathbb{X} \) is neither a submodule nor a quotient of \( \mathbb{Z} \). In fact, the complete submodule structure of \( \mathbb{Z} \) looks as follows:
The results of Section 2 can be easily illustrated graphically.

Given an algebra $A$, consider the set of all positive roots $r$, attach to each $r$ the $A$-module $X_r$ of the dimension type $r$, and for every pair of roots $r_1, r_2$ such that $r_2 - r_1$ is a simple root, draw $X_{r_1} \rightarrow X_{r_2}$ or $X_{r_2} \rightarrow X_{r_1}$ (the cases exclude each other), respectively. Moreover, one may indicate the fact that two respective cokernels or kernels are isomorphic by drawing the arrows parallel. Thus, for example, if
Interpretations of the root systems

\[ \Lambda_2 = \begin{pmatrix} R & \varepsilon & \varepsilon \\ 0 & \varepsilon & \varepsilon \\ 0 & 0 & \varepsilon \end{pmatrix}, \]

then \( \Gamma(\Lambda_2) = 1 \xrightarrow{(1,2)} 2 \to 3 \) is of type \( B_3 \) and the corresponding root system with the module structure is described by

Observe that this graph does not coincide with the graph of all irreducible maps of [1] between the indecomposable modules, which looks as follows:
The real algebra

\[ \lambda_3 = \begin{pmatrix} \mathbb{R} & 0 & \mathbb{C} \\ 0 & \mathbb{C} & \mathbb{C} \\ 0 & 0 & \mathbb{C} \end{pmatrix} \]

whose graph \( \Gamma(\lambda_3) = \xymatrix{ & C^*I_3 \\ C^*I_1 & I_1 & I_2 \\ P_1 & P_2 & P_3 \\ I_1 & I_2 & I_3 } \) differs from \( \Gamma(\lambda_2) \) only by orientation has the root and irreducible map diagrams as follows:
Interpretations of the root systems

and

Let us conclude with a more interesting example of the algebra

\[
A_4 = \begin{pmatrix}
F & F & O & O & O & F \\
F & F & O & O & O & F \\
F & F & F & F & F & F \\
F & O & F & F & F & F \\
F & F & F & F & F & F \\
F & F & F & F & F & F
\end{pmatrix}
\]

with \( \Gamma(A_4) = 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \) of type \( \mathbf{E}_6 \); the root diagram as follows:
where $x_{pq} = c_p c_q$ for $1 \leq p \leq 4$, $1 \leq q \leq 6$. 
REFERENCES

IV. Comm. in Algebra, 5(1977), 443-518.

Hermann 1968.


272(1975), 49-72.