A CONSTRUCTION OF RINGS WHOSE INJECTIVE HULLS ALLOW A RING STRUCTURE

Dedicated to the memory of Hanna Neumann

VLASTIMIL DLAB and CLAUS MICHAEL RINGEL

(Received 15 February 1972)

Communicated by M. F. Newman

In her paper [3], Osofsky exhibited an example of a ring R containing 16 elements which (i) is equal to its left complete ring of quotients, (ii) is not self-injective and (iii) whose injective hull $HR = H(RR)$ allows a ring structure extending the R-module structure of HR. In the present note, we offer a general method of constructing such rings; in particular, given a non-trivial split Frobenius algebra A and a natural $n \geq 2$, a certain ring of $n \times n$ matrices over A provides such an example. Here, taking for A the semi-direct extension of $Z/2Z$ by itself and $n = 2$, one gets the example of Osofsky. Thus, our approach answers her question on finding a non-computational method for proving the existence of such rings.

Throughout the present note, A denotes a ring with unity 1. Given an A-module M, denote by $\text{Rad} M$ the intersection of all maximal submodules of M. Dually, if M has minimal submodules, $\text{Soc} M$ denotes their union. Also, write $\text{Top} M = M / \text{Rad} M$. The radical $\text{Rad} A$ of the ring A will be denoted consistently by W and the factor A/W by Q. By a split ring A we shall understand a ring which is a semi-direct extension (Q, W) of W by Q; in this case, we shall consider Q to be embedded as a subring in A. Thus $A = Q \oplus W$ as additive groups and $(q_1, w_1) (q_2, w_2) = (q_1 q_2, q_1 w_2 + w_1 q_2 + w_1 w_2)$. For example, it is well-known that every finite dimensional algebra over an algebraically closed field is a split ring.

We recall that a Frobenius algebra A is a finite dimensional algebra over a field F which is self-injective; and that, given a decomposition $A = \oplus_{i=1}^s Ae_i$ into indecomposable left ideals, there exists a permutation π of $\{1, 2, \cdots, s\}$ such that $\text{Soc} Ae_i \cong \text{Top} Ae_{\pi(i)}$.

Given a ring R and an R-module M, the injective hull of M will be denoted by HM, the injective hull of RR by HR. The double centralizer of HR is called the

\[\text{This research has been supported by the National Research Council of Canada.}\]
left complete ring of quotients of R (cf. [2]). An essential extension M of the ring R, i.e. a left R-module M containing rR as an essential submodule, is said to allow a ring structure, if M can be made into a ring in such a way that the ring multiplication extends the given R-module multiplication.

Let $A = U \oplus V$ be a semi-direct extension of the two-sided ideal V by the subring U of A. In what follows, we shall consider, for a given $n \geq 2$, a subring R of the ring A_n of all $n \times n$ matrices over A. The subring $R = R(U \oplus V, n) = UI + T$, where I denotes the $n \times n$ identity matrix and

$$T = \{(a_{ij}) \in A_n | a_{ij} = 0 \text{ for } i \geq 2, \ a_{11} \in V\}.$$

Lemma 1. Let $A = U \oplus V$ be a semi-direct extension of V by U such that, for every non-zero $u \in U$, $Vu \neq 0$. Then A_n (considered as a left R-module) is an essential extension of the ring $R = R(U \oplus V, n)$.

Proof. Throughout the proof, the matrix $J_{kl} = (x_{ij}) \in A_n$ is defined by $x_{kl} = 1$ and $x_{ij} = 0$ otherwise.

Take $0 \neq (a_{ij}) \in A_n$. If $a_{ij} \neq 0$ for $i \geq 2$, then $J_{11} \in R$ and

$$(b_{ij}) = J_{11}(a_{ij}) \in A_n$$

is a non-zero matrix with $b_{ij} = 0$ for all $i \geq 2$. Let $b_{11} = u + v$ with $u \in U$ and $v \in V$. If $u = 0$, then $(b_{ij}) \in R$ and the proof is done. If $u \neq 0$, then there is $v' \in V$ such that $v'u \neq 0$, and thus $v' J_{11} \in R$ and

$$0 \neq (v' J_{11}) (b_{ij}) = (v' J_{11}) (a_{ij}) \in R.$$

Lemma 1 follows.

Remark. Observe that the preceding simple lemma provides a wide variety of rings with essential extensions which allow a ring structure.

Lemma 2. Let A be a split ring which is left artinian and whose left socle contains simple left modules of all possible types. Then $R = R(Q \oplus W, n)$ is its left complete ring of quotients.

Proof. Let $M \subseteq R$ consist of all matrices $(a_{ij}) \in A_n$ with $a_{11} = 0$ and $a_{ij} = 0$ for $i \geq 2$. Obviously, M is a two-sided ideal of R and can be considered as a left A-module $\mathbb{A} M$; in this way, the left ideals of R contained in M are just the submodules of $\mathbb{A} M$. Therefore every composition series of $\mathbb{A} M$ is also a composition series of R/M, and since R/M and A are isomorphic rings, R is left artinian.

Furthermore, if $\{f_1, f_2, \ldots, f_s\}$ is an orthogonal set of primitive idempotents in A whose sum is 1 and if

$$f_i = e_i + w_i \text{ with } e_i \in Q, \ w_i \in W \text{ for } i = 1, 2, \ldots, s,$$
then \(\{e_1, e_2, \ldots, e_s\}\) is an orthogonal set of primitive idempotents whose sum is 1 contained in \(Q\). Thus
\[\{E_1, E_2, \ldots, E_s\}, \text{ where } E_i = e_iI, \quad i = 1, 2, \ldots, s, \]
is an orthogonal set of primitive idempotents in \(R\) whose sum is \(1 \in R\).

Now, put
\[P = \{(a_{ij}) \in T | a_{ij} \in \text{Soc}_A A\}; \]
one can see immediately that \(P \subseteq \text{Soc}_R R\). Since
\[e_i \text{Soc}_A A \neq 0 \text{ if and only if } E_i P \neq 0, \]
we conclude, in view of our hypothesis on the left socle of \(A\), that the left socle of \(R\) contains simple left modules of all types. As a consequence, \(R\) has no proper rational extension and since the left complete ring of quotients of \(R\) is the maximal rational extension of \(R\), Lemma 2 follows.

Remark. Observe that the method of the proof of Lemma 2 enables to prove the assertion under the weaker assumption that the ring \(A\) is right perfect.

The main result of our note reads as follows.

Theorem. Let \(A\) be a two-sided indecomposable split Frobenius algebra with non-zero radical. Then \(R = R(Q \oplus W, n)\) coincides with its left complete ring of quotients and \(A_n\) is its left injective hull. Thus, the injective hull of \(R\) allows a ring structure.

Proof. Let \(A\) be finite dimensional over the field \(F\). Since \(A\) is a split Frobenius algebra, Lemma 2 yields immediately that \(R\) coincides with its left complete ring of quotients. Furthermore, in a Frobenius algebra the left and right socles are equal and thus every element \(u \in R\) such that \(uW = 0\) belongs necessarily to \(\text{Soc} A\). Also, if \(\{e_1, e_2, \ldots, e_s\} \subseteq Q\) is an orthogonal set of primitive idempotents whose sum is \(1 \in A\), \(We_i \neq 0\) for all \(i\); for, otherwise, the direct sum of all \(Ae_i\) such that \(We_i = 0\) is a proper two-sided direct summand of \(A\). Consequently,
\[\text{Soc} A \supseteq \bigoplus_{i=1}^{s} \text{Soc} Ae_i \supseteq \bigoplus_{i=1}^{s} \text{Rad} Ae_i = W. \]

In view of this inclusion, we can apply Lemma 1 and obtain that \(A_n\) is an essential extension of \(R\).

Now, writing \(E_i = e_iI\), we have
\[(qI + t)E_i = qe_iI + te_i \text{ for every } q \in Q \text{ and } t \in T. \]
Thus, if \(\pi\) is a permutation of \(\{1, 2, \ldots, s\}\) such that
\[\text{Soc} Ae_i \cong \text{Top} Ae_{\pi(i)}, \]
we deduce that \(\text{Soc } RE_i \) is a direct sum of \(n \) copies of \(\text{Top } RE_{n(t)} \). For,

\[
\text{Soc } RE_i = \{(a_{ij}) \in A_n \mid a_{ij} \in \text{Soc } Ae_i \text{ and } a_{ij} = 0 \text{ for } i \geq 2\}
\]

is of length \(n \) and, obviously, no simple submodule of \(RE_i \) is annihilated by \(E_{n(t)} \).

Hence

\[
HR = \bigoplus_{i=1}^{s} I(\text{Soc } RE_i) = \bigoplus_{i=1}^{s} \bigoplus_{j=1}^{n} H(\text{Top } RE_{n(t)}).
\]

Now, since

\[
H(\text{Top } RE_{n(t)}) \cong \text{Hom}_F(E_{n(t)}R, F)
\]

(cf. [1]), we calculate

\[
\dim F HR = \sum_{i=1}^{s} \sum_{j=1}^{n} \dim F H(\text{Top } RE_{n(t)}) = n \sum_{i=1}^{s} \dim F(E_{n(t)}R) = n \dim F R,
\]

because \(\pi \) is a permutation and thus \(\bigoplus_{i=1}^{s} E_{n(t)} R = R \). Furthermore, by the definition of \(R \)

\[
\dim F R = n \dim F A,
\]

and consequently,

\[
\dim F HR = n \dim F R = n^2 \dim F A = \dim F (A_n),
\]

as required.

The proof of Theorem is completed.

Example. For every field \(F \), the split extension \(A = (F, F) \) of \(F \) by itself (with the multiplication \((f_1, f_2)(f'_1, f'_2) = (f_1 f'_1, f_1 f'_2 + f_2 f'_1)\)) is a Frobenius algebra which satisfies the assumptions of the Theorem. Thus, in this way, we get rings whose injective hulls allow a ring structure. If we take \(F = \mathbb{Z}/2\mathbb{Z} \) and \(n = 2 \), we obtain the example of Ososky [3]. Here, the radical of \(A = (\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \) is given by \(W = \{0, \omega\} \), whereas \(Q = \{0, e\} \) with \(0 = (0, 0), \omega = (0, 1) \) and \(e = (1, 0) \). Since only right modules are considered in [3], the corresponding ring is given by

\[
R = \left\{ \begin{pmatrix} q + w & 0 \\ a & q \end{pmatrix} \mid q \in Q, w \in W, a \in A \right\}.
\]

It can be checked easily that the elements

\[
l = \begin{pmatrix} e & 0 \\ 0 & e \end{pmatrix}, \quad x = \begin{pmatrix} 0 & 0 \\ e & 0 \end{pmatrix}, \quad y = \begin{pmatrix} \omega & 0 \\ 0 & 0 \end{pmatrix}, \quad xy = \begin{pmatrix} 0 & 0 \\ \omega & 0 \end{pmatrix}
\]

generate \(R \) additively, and that they satisfy the equalities

\[
0 = x^2 = y^2 = (xy)^2 = yx = x(xy) = y(xy) = (xy)x = (xy)y.
\]
Also, the remaining generators of the right injective hull of \(R \) given in [3] can be identified with the following elements of \(A_2 \)

\[
m = \begin{pmatrix} 0 & \omega \\ 0 & 0 \end{pmatrix}, \quad n = \begin{pmatrix} \varepsilon & 0 \\ 0 & 0 \end{pmatrix}, \quad u = \begin{pmatrix} 0 & \varepsilon \\ 0 & 0 \end{pmatrix}, \quad \text{and} \quad \tilde{m} = \begin{pmatrix} 0 & 0 \\ 0 & \omega \end{pmatrix}.
\]

Remark. The local ring \(R = (F \oplus F, 2) \) of the proceeding example can be easily shown to have the property that both its left and right injective hulls are isomorphic to \(F_2 \) (and that both the left and right injective hulls allow a ring structure). In fact, more generally, if \(A \) is a commutative two-sided indecomposable split Frobenius algebra with non-zero radical \(W \) such that \(W^2 = 0 \), then the right injective hull of \(R(Q \oplus W, 2) \) is isomorphic to \(A_2 \). This follows immediately from the fact that, as a consequence of our assumptions, \(A \) is a local ring and there is an anti-automorphism \(\Phi \) of \(R \) defined by

\[
\begin{pmatrix} q + w & q' + w' \\ 0 & q \end{pmatrix} \Phi = \begin{pmatrix} q & q' \phi \\ w \phi^{-1} + w' & q \end{pmatrix}
\]

with \(q, q' \in Q, w, w' \in W \) and an isomorphism

\[
\phi: qQq \rightarrow qWq.
\]

The assumptions of the above assertions are rather natural due to the following result: If, under the assumptions of Theorem, the right injective hull \(H(R_R) \) of \(R = R(Q \oplus W, n) \) is isomorphic to \(A_n \), then \(n = 2 \) and \(W^2 = 0 \). For,

\[
\text{Soc } R_R = \{(a_{ij}) \in A_n \mid a_{11} = 0 \text{ and } a_{ij} = 0 \text{ for } i \geq 2\}
\]

and, following the notation of the proof of Theorem, one can see easily that \(\text{Soc } R_R \) is the direct sum of \((n - 1) \cdot \partial(e_iA) \) copies of \(\text{Top } E_iR \) \((1 \leq i \leq s)\); here, \(\partial(e_iA) \) denotes the (right) length of \(e_iA \). Therefore,

\[
\dim_F H(R_R) = \sum_{i=1}^{s} (n - 1)\partial(e_iA) \cdot \dim_F(Re_{i(0)})
\]

\[
= \sum_{i=1}^{s} (n - 1)\partial(e_iA) \cdot n \dim_F(Re_{i(0)}),
\]

and thus, since \(\dim_F(A_n) = n^2 \dim_F A \),

\[
n(n - 1) \sum_{i=1}^{s} \partial(e_iA) \dim_F(Re_{i(0)}) = n^2 \dim_F A.
\]

Using the fact that \(\partial(e_iA) \geq 2 \) for all \(1 \leq i \leq s \), one gets that

\[
2(n - 1) \dim_F A \leq n \dim_F A,
\]
and thus \(n \leq 2 \). Consequently, \(n = 2 \) and hence \(\delta(e_iA) = 2 \) for all \(1 \leq i \leq s \), i.e. \(W^2 = 0 \), as required.

We recall that the subring \(B \) of the ring \(A \) is called a \textit{left order} in \(A \), if every element of \(A \) can be written in the form \(b^{-1}b' \) with elements \(b \) and \(b' \) from \(B \).

COROLLARY. Let \(A \) be a two-sided indecomposable split Frobenius algebra with non-zero radical. Let \(B \) be a left order of \(A \) such that \(B = U \oplus V \) (as additive groups) with \(U \subseteq Q \) and \(V \subseteq W \). Then the ring \(R = R(Q \oplus W, n) \) is the left complete ring of quotients of \(S = R(U \oplus V, n) \) and \(A_n \) is the left injective hull of \(S \). Thus, the injective hull of \(S \) allows a ring structure.

PROOF. First, we show that \(S \) is a left order in \(R \). Given \((a_{ij}) \in R \), we can find elements \(b_j \) and \(b \in B \) such that
\[
b^{-1}b_j = a_{1j} \quad \text{for} \quad 1 \leq j \leq n.
\]
Let \(b = u + v \) and \(b_1 = u_1 + v_1 \) with \(u, u_1 \in U \) and \(v, v_1 \in V \). Furthermore, we can write
\[
b^{-1} = q + w \quad \text{with} \quad q \in Q \text{ and } w \in W.
\]
One can see easily that \(q \) is the inverse of \(u \) in \(A \). Consequently, the matrix \(qI + wJ_{11} \in R \) is the inverse of the matrix \(uI + vJ_{11} \in S \). Also, the equality \(b^{-1}b_1 = a_{11} \) together with the fact that \(a_{11} = a_{jj} + w' \) \((2 \leq j \leq n) \), for some \(w' \in W \), implies
\[
(qu_1 + (qv_1 + wu_1 + vw_1) = (q + w)(u_1 + v_1) = a_{jj} + w',
\]
and thus \(qu_1 = a_{jj} \). Therefore, setting
\[
B = u_1I + t \quad \text{with} \quad t = (b_{1j}) \in T, \quad \text{where} \quad b_{11} = b - u_1, \quad \text{and} \quad b_{1j} = b_j \quad \text{for} \quad 2 \leq j \leq n,
\]
\[
(uI + vJ_{11})^{-1}B = (qI + wJ_{11})B = (a_{ij}),
\]
and since both matrices \(uI + vJ_{11} \) and \(B \) belong to \(S \), \(S \) is a left order in \(R \), as required.

Now, it is well-known that, for a left order \(S \) in \(R \), \(sR \) is a rational extension of \(sS \) and that every rational extension of \(sS \) containing \(R \) is also a rational extension of \(sR \). Therefore, according to Theorem, \(sR \) is the maximal rational extension of \(sS \), i.e \(R \) is the left complete ring of quotients of \(S \). And, since \(A_n \) is obviously the injective hull of \(sS \), our proof is completed.

EXAMPLE. The split extension \(B = (Z, Z) \) of \(Z \) by itself is a left order in \(A = (Q, Q) \) which satisfies the assumptions of Corollary.

The authors are indebted to Dr. N. Lang for calling their attention to the problem.
Injective hulls allow a ring structure

References

Carleton University
Ottawa, Canada