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It is shown that for any two n-by-n matrices A, B the inequality
Iper(A4) — per(B)| < nl| A — B| max(f 4|, | BY) ™!

holdsfor | || =} [,, thel,-operator norm (1 < p < o0). There are operator norms for which this inequality
is invalid for some A, B.

1. INTRODUCTION

It is well known that for any operator norm || || on the set C™" of n-by-n complex
matrices and for any A4, Be C*" the inequality

|det(A) — det(B)| < nl|A — Bl max(|l4], | BI)""*

holds, see [3]. - o
Influenced by the general recent interest in permanents, the question of the variation

of permanents also has been studied. In [1] and [2] we proved for the spectral norm
and the I, and I, norm resp. the inequality above with “det” replaced by “per”. In
this note we show that this holds for all [ ,-norms (1 < p < c0), but not for all operator

norms.
The main results 1s:

THEOREM Let A, BeC™". Then
(1) Iper(A4) — per(B)| < n||A — B max(|4[, | B])"~*

Jor | =1 I, 1<p<co.

Here per(A) denotes the permanent of 4 = (), i.e.,

Per(A) = Z 0141824, " "Unon
o

where o runs through all permutations of {1,...,n}. For x=(x,,...,x,)€ C" and

105



106 R. BHATIA AND L. ELSNER

1 < p < oo we define as usual the [ -norm

n 1/p
Ixl, = (_g: |x,-|")

and the associated operator norm
I All, = max{}jAx]|,: |x}, <1}
The proof of the theorem is given in Section 2. In the concluding remarks we

n 1/p
mention that (1) holds also for the weighted /,-norms ( Y Id:x.-l") ,d; >0 and that
i=1
(1) fails to hold for certain operator norms.
For any rectangular matrices F, G we denote by F® G the usual tensor product,

as, e.g., defined in [5].

2. PROOF OF THE THEOREM
We start with three preparatory lemmata.
LeMMa 1 If AeC™™, Be C™" then
(2) [A® B, = (Al 1B,
Proof We make use of the obvious relation
lu®vll, = lul,llol,, ueC™, veCm

There exist xe C™, ||x],= 1, yeC", ||y||, =1 such that [ Ax|t, = | Al ,, I By
As [x®yl,=1, we have

(3) I1A®B|,> (A®B)(x® ), = |Ax®Byll, = | Ax||, | Byl , = [ 41, Bll,-

Now we show the reverse inequality. Let I,, denote the m-by-m unit matrix. Partition
a given vector xe C™ in the form

= || B],.

Iy

x=(x!,...,x™), x'eC", i=1,...,m.

Then, as

— -

B 0

B
1,®B =

. 0 B

we get

I @B)xl; = (Bx', ..., Bxmlz= 3 [Bx[Z< |BIZ Y |x'I2 = |BI2lIxIZ
i=1 P

i=1
and we have

) 11, @Bl , < B,
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It is well known that there exists a permutation P such that F® G = P(G® F)PT for
square F, G. In particular, A® I, = P(I,® A)P”,and as the I -norm is invariant under
P, we get from (4)

(5) AR LI, < 14,

Using A® B= (A® 1,)(1,,® B) and the submultiplicativity of the {,-norm we get from
(4) and (5)

(6) lA® Bll, < 1|41,1Bl,
and by (3) and (6) we have (2). [ ]
An obvious consequence is

LEMMA 2 For A,eC*"™i=1,...,s
(7) 14, ®- - - ®@A,= ] 14ll,.
i=1

Let AcC™, and denote the nth tensor power of A by )" A4, ie.,
X"4=4Q4Q --®A4.

n-times

LeMMA 3 For A, BeC™

@) ||®"A - ®" B|l, <nlA— B, max(| 4]l ,» 1Bl
Proof Let
C=4A® - - ®A®(A-B)®B®---®B.
| S———— | N —
n—i i-1
Then )
X"4-Q"B=Y C.
i=1
Now (8) follows from (7). |

Proof of the Theorem The usual way to index the coefficients of vectors in ®" c"
is by using multiindices
oa=(0g,..- ,a,)ell, ..., n}"
Let M = {1, ..., n}" be defined by
M = {a: o; # o for i # j}

and introduce the projection Py by

X, aeM
PMX=§=(6(1), x=(xa)3 éa={0 a¢M'

Let e=(1,...,1). It is easy to sec that
9) Py((X)" A)Pye = per(4)Pye.
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In fact, for ae M

(@" APye),= Y. (R Ag= Y. 45,005, * A, = PET(A).
M

ﬂ’e geM
Using [|Pyéll, < II€]l, we get
iper(4) — per(B)| | Pyell, = |1 Pu(R)" A — Q)" B)Pyell, < ()" 4 — X)" B)Pyel,
<HX)"A— Q)" Bll, | Pyell,.

This together with (8) gives (1). [ |

3. CONCLUDING REMARKS

Remark | Lemma 1 (and 2) may be there in the literature; we were, however,
unable to find it. We are thankful to K. B. Sinha for an argument leading to the
proof given here. It should be mentioned that it is easy to adapt the proof so as to
show the result (2) for nonsquare matrices. The same result also holds for operators
on the Lebesgue spaces L,, 1 <p < c0.

Remark 2 In the proof of the inequality for the variation of determinants [3]
Friedland uses the fact that det A is an eigenvalue of ®" A with an eigenvector
independent of 4. The relation (9) can be interpreted that per(A) is an eigenvalue of
a principal submatrix of 4, where its position and the eigenvector are independent of A.

Remark 3 By the preceding remarks we have |per(4) < II®" Al ,, and hence
by (7)

(10) [per(A)l < | 4"

for | | =1 |, ! <p<n. The special case p=2 can be found in [4]. For another
derivation of (10) see Remark 5.

Remark 4 Given a diagonal matrix DeC™" with positive diagonal entries d;
consider the norm

n l/p
Ixllp,, = I1Dx]|, = ( ) ldixil") -
i=1
The operator norm corresponding to this vector norm is given by
1Allp,,=IDAD ™!,

As per(DXD™') = per(X) for X e C™" we obtain (1) also for || || = || lp.p» D as above
and 1<p< w.

Remark 5 1t is, however, not true that (1) holds for all operator norms (contrary
to a conjecture in [2]). This can be seen as follows:

Let || || be an operator norm such that (1) holds for all 4, B. If we set B=tA in
(I)wegetforO<t<l

1 -
perta <™ e
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Considering t — 1 we get |per(A)| < ||4||". Hence, as the infimum of all operator norms
of a fixed matrix A is given by its spectral radius p(A), and as there are matrices A

1 -
such that p(4) < |per(A)| (e.g., A = [1 i] where p(A) =0 < |per(A4)| = 2), we find

that (1) does not hold for all operator norms. We might as well present a counter-

1
example: Take A = [l

1}, B=1tA4,0<t <1, ||x| =max(3|x; + x,], |x; — x,|). Then

Al = 1for the associated operator norm and |per(4) — per(B)| =2(1 — t3) > 2(1 —t) =
2| A — B|| max(||4], | BIl).

Remark 6 Observe that we have actually proved a resuit slightly stronger than
(1), namely

iper(A) — per(B)| < | A — B| - "Alp = 1Bl
" 1AL, — B,
Here it is agreed that = = na""!. This result follows if we use in the proof of
a—a

Lemma 3 that |Gl = |4 — BIl, Il AI3 Bl .
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