# On Convexity Properties of the Spectral Radius of Nonnegative Matrices

L. Elsner
Fakultät für Mathematik
Universität Bielefeld
Postfach 86 40
4800 Bielefeld 1, Federal Republic of Germany

Submitted by Hans Schneider

#### **ABSTRACT**

Elementary matrix-theoretic proofs are given for the following well-known results:  $r(D) = \max\{\text{Re } \lambda : \lambda \text{ an eigenvalue of } A + D\}$  and  $s(D) = \ln \rho(e^D A)$  are convex. Here D is diagonal, A a nonnegative  $n \times n$  matrix, and  $\rho$  the spectral radius.

## 1. INTRODUCTION

In this note we give new proofs of two recent results which can be formulated as follows: Let  $\mathcal{D}_n$  denote the set of real  $n \times n$  diagonal matrices, and  $I \in \mathcal{D}_n$  the unit matrix. A function  $\varphi \colon \mathcal{D}_n \to \mathbb{R}$  is convex if

$$\varphi(\alpha D_1 + (1 - \alpha)D_2) \leq \alpha \varphi(D_1) + (1 - \alpha)\varphi(D_2)$$
 (1)

holds for  $0 \le \alpha \le 1$ ,  $D_i \in \mathcal{D}_n$ , i = 1, 2.  $\varphi$  is s-convex if it is convex and for  $0 < \alpha < 1$  equality in (1) holds iff  $D_1 - D_2$  is a multiple of I.

Let  $A = (a_{ij}) \ge 0$  be a fixed nonnegative  $n \times n$  matrix. Denote by  $\rho(B)$  the spectral radius of a matrix B.

THEOREM 1. Define  $r: \mathcal{D}_n \to \mathbb{R}$  by

$$r(D) = \max\{\text{Re }\lambda: \lambda \text{ an eigenvalue of } A + D\}.$$

Then r is convex. r is s-convex if A is irreducible.

LINEAR ALGEBRA AND ITS APPLICATIONS 61:31-35 (1984)

<sup>31</sup> 

L. ELSNER

THEOREM 2. Define  $s: \mathcal{D}_n \to \mathbf{R}$  by

$$s(D) = \ln \rho(e^D A).$$

Then s is convex. If A is fully indecomposable, then s is s-convex.

Both results have been proved in [6] by S. Friedland, who used the Donsker-Varadhan variational principle. The convexity of r was first proved by Cohen [3] using tools from the theory of random evolutions. A purely matrix-theoretic proof was given by Deutsch and Neumann [4]. We feel that our proofs are more elementary, simpler, and shorter. We give essentially two versions of the proof. Firstly, we relate the convexity of r and s to the convexity of certain sets of M-matrices, a result which was established by Carlson and Varga in 1973 [2] and by the author in 1970 [5]. Then we give, by adapting the ideas in [2] and [5], direct proofs of Theorems 1 and 2, including the strictness results.

#### 2. RESULTS

We define for  $A \ge 0$  the sets

$$\mathcal{M} = \{ D \in \mathcal{D}_n : D - A \text{ is an } M\text{-matrix} \}$$

and

$$\mathcal{N} = \left\{ D \in \mathcal{D}_n : e^{-D} - A \text{ is an } M\text{-matrix} \right\}.$$

Recall that  $B = \kappa I - C$ ,  $C \ge 0$ , is an M-matrix if  $\kappa \ge \rho(C)$ . A set  $S \subseteq \mathcal{D}_n$  is strictly convex if  $D_1, D_2 \in S$ ,  $D_1 \ne D_2$ ,  $0 < \alpha < 1$  implies  $\alpha D_1 + (1 - \alpha)D_2 \in \mathring{S}$ , where  $\mathring{S}$  denotes the interior of S relative to  $\mathcal{D}_n$ . We have the following

THEOREM 3.  $\mathcal{M}$  and  $\mathcal{N}$  are convex. For A irreducible  $\mathcal{M}$  is strictly convex. For A fully indecomposable  $\mathcal{N}$  is strictly convex.

The results on  $\mathcal{M}$  are proved in [5, Satz 3] (observe however that the definitions of M-matrix are different). The convexity of  $\mathcal{N}$  is equivalent to

$$D_1, D_2 \in \mathcal{M} \quad \Rightarrow \quad D_1^{\alpha} D_2^{1-\alpha} \in \mathcal{M} \quad \text{for } 0 \leqslant \alpha \leqslant 1, \tag{2}$$

which can be found in [2, proof of Theorem 3]. The last result is new and follows from the subsequent proof of Theorems 1 and 2.

Let us indicate that Theorem 3 and Theorems 1, 2 are equivalent. We need only apply the following

PROPOSITION. For  $\kappa \in \mathbb{R}$  and  $D \in \mathcal{D}_n$  the following hold:

- (a)  $\kappa \geqslant r(D)$  iff  $\kappa I D \in \mathcal{M}$ ,
- (b)  $\kappa > r(D)$  iff  $\kappa I D \in \mathcal{M}$ ,
- (c)  $\kappa \geqslant s(D)$  iff  $D \kappa I \in \mathcal{N}$ ,
- (d)  $\kappa > s(D)$  iff  $D \kappa I \in \mathring{\mathcal{N}}$ .

These are easily established. For example,  $r(D_i)I - D_i \in \mathcal{M}$ . From the convexity of  $\mathcal{M}$  we infer  $B_{\alpha} = [\alpha r(D_1) + (1-\alpha)r(D_2)]I - [\alpha D_1 + (1-\alpha)D_2] \in \mathcal{M}$  and (a) gives  $r(\alpha D_1 + (1-\alpha)D_2) \leqslant \alpha r(D_1) + (1-\alpha)r(D_2)$ , i.e., the convexity of  $\mathcal{M}$  implies the convexity of r.

If however equality holds in (1) for  $\varphi = r$ , then  $B_{\alpha} \notin \mathcal{M}$ . Then the strict convexity of  $\mathcal{M}$  implies  $r(D_1)I - D_1 = r(D_2)I - D_2$ , i.e., r is s-convex. Similarly we can prove

$$r(s)$$
 convex  $\Leftrightarrow \mathcal{M}(\mathcal{N})$  convex  $r(s)$  s-convex  $\Leftrightarrow \mathcal{M}(\mathcal{N})$  strictly convex.

REMARK. By applying the inequality

$$\xi^{\alpha}\eta^{1-\alpha} \leq \alpha\xi + (1-\alpha)\eta \qquad \xi, \eta \geqslant 0, \quad 0 \leq \alpha \leq 1,$$
 (3)

which is related to the Hölder inequality

$$\sum_{i=1}^{n} \xi_{i}^{\alpha} \eta_{i}^{1-\alpha} \leq \left(\sum \xi_{i}\right)^{\alpha} \left(\sum \eta_{i}\right)^{1-\alpha} \qquad \xi_{i}, \eta_{i} \geq 0, \quad 0 \leq \alpha \leq 1, \tag{4}$$

to (2), we see that the convexity of  $\mathcal N$  implies the convexity of  $\mathcal M$ .

REMARK. For later use we state that for  $0 < \alpha < 1$  equality holds in (3) iff  $\xi = \eta$  and equality holds in (4) iff the vectors  $\xi = (\xi_1, \dots, \xi_n)$  and  $\eta = (\eta_1, \dots, \eta_n)$  are linearly dependent.

### 3. PROOFS

We turn now to the direct proofs of Theorems 1 and 2.

Proof of Theorem 1. To prove (1) for  $\varphi = r$  it suffices to assume that A is irreducible and  $A + D_i \geqslant 0$ . Then by the Perron-Frobenius theorem (e.g. [7, p. 30]) there exist positive vectors  $\mathbf{x} = (x_1, \dots, x_n)$ ,  $\mathbf{y} = (y_1, \dots, y_n)$  such that  $(A + D_1)\mathbf{x} = r(D_1)\mathbf{x}$  and  $(A + D_2)\mathbf{y} = r(D_2)\mathbf{y}$ . Denoting the diagonal elements of  $D_j$  by  $d_{i,j}$ , j = 1,2 we have

$$d_{i,1} + \sum_{k=1}^{n} a_{ik} \frac{x_k}{x_i} = r(D_1), \quad d_{i,2} + \sum_{k=1}^{n} a_{ik} \frac{y_k}{y_i} = r(D_2) \qquad i = 1, ..., n. \quad (5)$$

Defining  $z_i = x_i^{\alpha} y_i^{1-\alpha}$  and using (3), we infer

$$\alpha d_{i,1} + (1-\alpha)d_{i,2} + \sum_{k=1}^{n} a_{ik} \frac{z_k}{z_i} \le \alpha r(D_1) + (1-\alpha)r(D_2)$$
 (6)

which by the Collatz quotient theorem (e.g. [7, Theorem 2.2]) implies (1) for  $\varphi = r$ . Hence  $\varphi$  is convex.

To prove the second fact, we assume A irreducible and equality in (1) for some  $\alpha \in (0,1)$ . We want to show that  $D_1 = D_2 + \gamma I$ . We apply Theorem 2.2 in [7] again and see that equality holds in (6). Considering the case of equality in (3), we infer that  $a_{ik} \neq 0$  implies  $x_k/x_i = y_k/y_i$ . Equation (5) yields  $d_{i,1} - r(D_1) = d_{i,2} - r(D_2)$  for  $i = 1, \ldots, n$  or  $D_1 = D_2 + \gamma I$ .

*Proof of Theorem 2.* Consider  $\tilde{s}(D) = \rho(e^D A)$ . It suffices to show that for A irreducible and  $0 \le \alpha \le 1$ 

$$\tilde{s}(D_1)^{\alpha}\tilde{s}(D_2)^{1-\alpha} \geqslant \tilde{s}(\alpha D_1 + (1-\alpha)D_2). \tag{7}$$

(8)

There exist x > 0, y > 0 such that  $\tilde{s}(D_1)x = e^{D_1}Ax$ ,  $\tilde{s}(D_2)y = e^{D_2}Ay$ . Hence by (4)

$$\begin{split} \tilde{s}(D_1)^{\alpha} \tilde{s}(D_2)^{1-\alpha} &= \left( e^{d_{i,1}} \sum_{k} a_{ik} \frac{x_k}{x_i} \right)^{\alpha} \left( e^{d_{i,2}} \sum_{k} a_{ik} \frac{y_k}{y_i} \right)^{1-\alpha} \\ &\geqslant e^{\alpha d_{i,1} + (1-\alpha)d_{i,2}} \sum_{k} a_{ik}^{\alpha} \left( \frac{x_k}{x_i} \right)^{\alpha} a_{ik}^{1-\alpha} \left( \frac{y_k}{y_i} \right)^{1-\alpha} \\ &= e^{\alpha d_{i,1} + (1-\alpha)d_{i,2}} \sum_{k} a_{ik} \frac{z_k}{z_i}, \qquad i = 1, \dots, n, \quad z_i = x_i^{\alpha} y_i^{1-\alpha}. \end{split}$$

Again the quotient theorem implies (7).

To establish the second part of Theorem 2, we assume A to be fully indecomposable. It suffices to show that for  $0 < \alpha < 1$  equality in (7) implies  $D_1 = D_2 + \gamma I$ .

Recall that A is fully indecomposable if PA is irreducible for all permutations P. There exists a permutation  $\pi$  such that  $B = (b_{ij})$ ,  $b_{ij} = a_{\pi(i),j}$ , is irreducible and has a positive diagonal [1]. Equality in (7) implies, as before, equality in (8) for i = 1, ..., n. By the equality condition for the Hölder inequality we get

$$e^{d_{i,1}}a_{ik}\frac{x_k}{x_i} = c_i e^{d_{i,2}}a_{ik}\frac{y_k}{y_i}, \qquad i, k = 1, ..., n.$$
 (9)

If we sum (9) over k, we get  $\tilde{s}(D_1) = c_i \tilde{s}(D_2)$ ; hence  $c_i = c$  independent of i. Setting  $W = \operatorname{diag}(w_i)$ ,  $w_i = ce^{d_{i,2} - d_{i,1}}$ , we see that A and WA are diagonally similar. Let  $z_k = y_k/x_k$ . From (9)  $a_{ik} = w_i a_{ik} z_k/z_i$ . If  $b_{ij} \neq 0$ , then  $w_{\pi(i)} z_j/z_{\pi(i)} = 1$ . But also  $b_{\pi(i),i} \neq 0$ ; hence  $w_{\pi(i)} z_i/z_{\pi(i)} = 1$ , and  $z_j = z_i$ . As B is irreducible, any two indices can be connected in B, and therefore  $z_i = z_j$  for all i, j. Hence  $w_i = 1$ , which implies  $D_1 = D_2 + \gamma I$ ,  $\gamma = s(D_1) - s(D_2)$ .

#### REFERENCES

- 1 R. A. Brualdi, S. V. Parter, and H. Schneider, The diagonal equivalence of a non-negative matrix to a stochastic matrix, J. Math. Anal. Appl. 16:31-50 (1966).
- 2 D. H. Carlson and R. S. Varga, Minimal G-functions, Linear Algebra Appl. 6:97-117 (1973).
- 3 J. E. Cohen, Random evolutions and the spectral radius of a non-negative matrix, Math. Proc. Cambridge Philos. Soc. 86:345-350 (1979).
- 4 E. Deutsch and M. Neumann, Derivatives of the Perron-root at an essentially non-negative matrix and the group inverse of an M-matrix, J. Math. Anal. Appl., to appear.
- 5 L. Elsner, Über Eigenwerteinschließungen mit Hilfe von Gerschgorin-Kreisen, Z. Angew. Math. Mech. 50:381-384 (1970).
- 6 S. Friedland, Convex spectral functions, *Linear and Multilinear Algebra* 9:299-316 (1981).
- 7 R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962.

Received 21 March 1983