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ABSTRACT

Elementary matrix-theoretic proofs are given for the following well-known results:
(D)= max{Re A: A an eigenvalue of A + D} and s(D)= Inp(e A)' are convex. Here
D is diagonal, A a nonnegative n X n matrix, and p the spectral radius.

1. INTRODUCTION

In this note we give new proofs of two recent results which can be
formulated as follows: Let 2, denote the set of real n X n diagonal matrices,
and I € @, the unit matrix. A function ¢: &, — R is convex if

(P(aDl"'(l““)Dz)Q“‘P(Dl)'*(l“a)‘P(Dz) (1)
holds for 0 sa<1, D,€9,, i =1,2. @ is sconvex if it is convex and for
0 < a <1 equality in (1) holds iff D, — D, is a multiple of I.

Let A=(a,)> 0 be a fixed nonnegative n Xn matrix. Denote by p(B)
the spectral ra(ﬁus of a matrix B.

TueorEm 1. Define r: 2, — R by
(D)= max{Re A: A an eigenvalue of A + D}.
Then r is convex. r is s-convex if A is irreducible.
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THEOREM 2. Define s: 2, >R by
s(D)=Inp(ePA).

Then s is convex. If A is fully indecomposable, then s is s-convex.

Both results have been proved in [6] by S. Friedland, who used the
Donsker-Varadhan variational principle. The convexity of r was first proved
by Cohen [3] using tools from the theory of random evolutions. A purely
matrix-theoretic proof was given by Deutsch and Neumann [4]. We feel that
our proofs are more elementary, simpler, and shorter. We give essentially two
versions of the proof. Firstly, we relate the convexity of r and s to the
convexity of certain sets of M-matrices, a result which was established by
Carlson and Varga in 1973 [2] and by the author in 1970 [5]. Then we give,

by adapting the ideas in [2] and [5], direct proofs of Theorems 1 and 2,
including the strictness results.

2. RESULTS

We define for A > 0 the sets

M ={D€EP,:D— Aisan M-matrix}

and
N = {DE,@n:e‘D—AisanM—matrix}.

Recall that B=«kI—C, C> 0, is an M-matrix if k > p(C). A set SC @, is
strictly convex if D), D, €S, D, # D,, 0 < a < I implies aD;+(1—-a)D, € S,
where § denotes the interior of S relative to 2,. We have the following

THEOREM 3. . # and A are convex. For A irreducible # is strictly convex.
For A fully indecomposable A is strictly convex.

The results on # are proved in [5, Satz 3] (observe however that the
definitions of M-matrix are different). The convexity of 4 is equivalent to

D,D,e # = DD} *e# for 0<a<l, (2)
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which can be found in [2, proof of Theorem 3]. The last result is new and
follows from the subsequent proof of Theorems 1 and 2.

Let us indicate that Theorem 3 and Theorems 1, 2 are equivalent. We
need only apply the following

Proposition. For k €R and D € 9, the following hold:

(a) x=2r(D)iffxkl -De A,

() k> r(D)iffkl —-DE A,

(c) k2s(D)iff D—kl €N,

d) x> s(D) iff D -kl € A"

These are easily established. For example, r(D)I — D, € A. From the
convexity of # we infer B, = [ar(D))+(1— (DO — [aD; +(1 — a)Dy)
€ A and (a) gives r(aD, +(1 — a)Dy) < ar(D)+(1 - a)r(D,), i.e., the con-
vexity of # implies the convexity of r. .

If however equality holds in (1) for ¢ =r, then B, & . Then the strict
convexity of . implies r(Dy)] — D, =r(Dy)I — D,, i.e., r is sconvex. Simi-
larly we can prove

r(s) convex < . (A")convex

r(s) sconvex < .# (A") strictly convex.
Remark. By applying the inequality
tept-agag+(1-a)n  &m20, O<ea<l (3)
which is related to the Holder inequality

o

£,n,20, O<a<l, (4

S et-e< (Lg)(Sn)'

i=1

to (2), we see that the convexity of A" implies the convexity of M.

Remanrk. For later use we state that for 0 <a <1 equality holds in (3) iff
§=17 and equality bolds in (4) iff the vectors &=(£,..-,¢,) and 1=
(My5-..,m,) are linearly dependent.

3. PROOFS

We turn now to the direct proofs of Theorems 1 and 2.
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Proof of Theorem 1. To prove (1) for ¢ = r it suffices to assume that A is
irreducible and A + D, > 0. Then by the Perron-Frobenius theorem (e.g. [7, p.
30]) there exist positive vectors x =(x,,...,x,), ¥=(y,...,y,) such that
(A+ Dy)x=r(D))x and (A + D,)y =r(D,)y. Denoting the diagonal ele-
ments of Dj by di!]., j=1,2 we have

n n
di,1+ Z aik-{E:T(Dl); d,‘,2+ Z a’-k%ﬁ=1’(D2) i=1,...,n. (5)
k=1 k=1 '

xi i

Defining z; = x{y! ~* and using (3), we infer

edi +(1-a)di o+ T apE<ar(D)+(1-a)r(D,)  (6)
k=1

which by the Collatz quotient theorem (e.g. [7, Theorem 2.2]) implies (1) for
¢ =r. Hence ¢ is convex.

To prove the second fact, we assume A irreducible and equality in (1) for
some a € (0,1). We want to show that D, = D, + yI. We apply Theorem 2.2
in [7] again and see that equality holds in (6). Considering the case of equality
in (3), we infer that a, #0 implies x,/x, =y, /y,. Equation (5) yields
d;y—1(D))=d, ,—r(Dy)fori=1,...,nor D, =D, + yI. L

Proof of Theorem 2. Consider §(D)= p(ePA). It suffices to show that for
A irreducible and 0 € a < 1

§3(D,)"5(Dy)' " * 2 5(aD, + (1~ a) D). (7)

There exist x > 0, y > 0 such that §(D,)x = eAx, $(D,)y = eP2Ay. Hence
by (4)

1 xk a y l-a
-~ o . -—a di fd 3 d'. k
5(D,)*$(Dy) —(e "Zaikx ) (3 ‘2Zaik"_)
k f k Y,
d xk o yk 1-a
a i, +(1”’€()di‘ o Kk 1- Jk
Ze 2Zaik(x ) a i a( )
k i Y
= adl 1+(1‘—¢X)d,-2 zk . _ _a,l-a
_e . » Eaikm’ t=1’...’n’ zt_xiyi
ko %
(8)

Again the quotient theorem implies .
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To establish the second part of Theorem 2, we assume A to be fully
indecomposable. It suffices to show that for 0 < a <1 equality in (7) implies
D,=D, + yL

Recall that A is fully indecomposable if PA is irreducible for all permu-
tations P. There exists a permutation 7 such that B=(b;;), b;; =@, j» i
irreducible and has a positive diagonal [1]. Equality in (7) implies, as betlore,
equality in (8) for i=1,...,n. By the equality condition for the Holder
inequality we get

X v Yy .
ed'-laik—x—k=c,-ed'-2a,.k—, i,k=1,...,n. (9)

i i

If we sum (9) over k, we get §(D,) = ¢;§(D,); hence ¢; = ¢ independent of i.
Setting W = diag(w,), w; = cerz~9.1 we see that A and WA are diagonally
similar, Let z, =y,/x;. From (9) a;=w;a,3/%;: If b;;#0, then
Wri)2j/Zneiy = 1. But also by # 0; hence w,;,%; /2= 1, and z;=3;.

As B is irreducible, any two indices can be connected in B, and therefore
2, =3z for all i, j. Hence w, =1, which implies D, = D, + v, y=s(D;)—
s(D,). |
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