Elektronen- Spinpolarisation beim Photoeffekt mit zirkularpolarisiertem Licht an Alkalischichten

U. Heinzmann, K. Jost, J. Kessler und B. Ohnemus
Physikalisches Institut der Universität Münster
Eingegangen am 14. Februar 1972

Polarized Electrons Produced by Photoemission from Alkali Surfaces Illuminated with Circularly Polarized Light

The spin polarization of photoelectrons emitted by alkali surfaces illuminated with monochromatic circularly polarized radiation has been observed. Maximum spin polarization of 4.5% is obtained with cesium at a wavelength of about 4500 Å. Both maximum spin polarization and the wavelength of the maximum decrease monotonically with decreasing atomic number. The spin polarization is zero within experimental errors, in the case of solid sodium and lithium.

1. Einleitung

In einer früheren Arbeit\(^1\) wurde gezeigt, daß Photoelektronen, die aus unpolarisierten Cäsiumatomen mit Hilfe zirkularpolarisierter Lichtes losgelöst werden, spinpolarisiert sind. Dieser auf der Spin-Bahn-Kopplung beruhende „Fanoeffekt“ wurde von Fano\(^2\) für Cäsium quantitativ vorhergesagt. Das Ziel der vorliegenden Arbeit war es, zu prüfen, ob ein analoger Effekt auch bei der Photoemission aus festen Cäsium- und anderen Alkalischichten erfolgt, oder anders ausgedrückt, ob Photoelektronen aus einem Festkörper auch ohne ein äußeres Feld, das die Spinorientierung in einem Energieband festlegt, polarisiert sein können. Dazu wurden bei Cs, Rb, K, Na und Li Messungen der Elektronenpolarisation in einem Wellenlängenbereich von 2300 Å bis zur jeweiligen Photoemissionsgrenze durchgeführt.

2. Versuchsanordnung

Die Versuchsanordnung ist in Fig. 1 schematisch angegeben. Aus einer kontinuierlich mit einem Atomstrahlofen aufgedampften Alkalischicht wurden Photoelektronen durch einen monochromatischen Strahl zirkularpolarisierter Lichts ausgelöst. Durch das kontinuierliche Aufdampfen war eine genügend reine Alkalischicht gewährleistet, obwohl

Elektronen-Spinpolarisation beim Photoeffekt mit zirkularpolarisiertem Licht

Fig. 1. Versuchsanordnung zur Messung der Spinpolarisation der Photoelektronen

das Experiment nicht im Ultrahochvakuum durchgeführt wurde. Die Photoelektronen wurden durch ein elektrisches Feld abgezogen und auf eine Energie von 120 keV gebracht, damit ihre Spinpolarisation durch Mott-Streueung an einer Goldfolie bestimmt werden konnte.

2.1. Lichtoptik

Das monochromatische Licht, das von einer Xenon-Hochdrucklampe und einem Gittermonochromator (Wellenlängenbereich 2000 bis 8000 Å) mit einem Auflösungsvermögen von ± 25 Å erzeugt wurde, traf nach Durchsetzen zweier Quarzlinsen, eines Linearpolarisators (dichroitischer Film), eines Viertelwellenplättchens (für die Nennwellenlänge 2600 oder 4200 Å je zwei Quarzlätchern in Subtraktionslager) und eines Vakuumeintrittsfensters mit einer Winkeldivergenz von weniger als 6° auf das Target. Der Umriß des Lichtflecks war mindestens 1 mm vom Rand der ebenen Targetfläche entfernt. Da es sich gezeigt hatte, daß schon geringste Verspannungen des Trägerflansches ein eingeklebtes Lichtseintrittsfenster optisch aktivieren und damit die Lichtpolarisation beeinflussen können, wurde die Versuchscheibe als Lichteintrittsfenster am Vakuumtopf frei auf einem O-Ring gelagert. Die Polarisation des auf das Target fallenden Lichtes wurde bestimmt, indem man das Target entfernte, den Lichtabsorber (vgl. Fig. 1) durch einen Linearpolarisator (Analyser) und einen Photomultiplier ersetzte und dann Lichtintensitätsmessungen nach den in früheren Arbeiten ausführlich beschriebenen Meßmethoden durchführte. Weitere Einzelheiten über die Lichtoptik, über die optischen Meßverfahren und Testmessungen können an anderer Stelle nachgelesen werden.

2.2. Target

Als Targetträger wurde eine etwa 2 cm² große Aluminiumfläche benutzt, auf die kontinuierlich ein Alkalienstrahl in einem Vakuum von 10⁻⁵ Torr aufgedampft wurde. Wie Fig. 1 zeigt, war das Target für Photoeffektmessungen bei verschiedenen

Lichtauftreffwinkel um die Elektronenabziehrichtung drehbar angebracht. Außerdem zeigte es sich, daß eine Neigung der Targetfläche um 5° gegenüber der Elektronenabziehrichtung genügte, um die Photoelektronen mit einem ausreichenden Wirkungsgrad abzuziehen. Entsprechende Versuche wurden durch Abtasten der Targetfläche mit einem schmalen Lichtbündel durchgeführt. Der Targetträger war durch ein Contracid-Röhren von der Drehdurchführung wärmeisoliert und konnte über einen Kupferschleifring, der mit einem Kühlstab verbunden war, auf Temperaturen bis −130°C abgekühlt werden. Die Targettemperatur wurde mit einem NiCr-Ni-Thermoelement gemessen.

Bei den in 2.3 angegebenen Ofen-Betriebstemperaturen betrug die Aufdampfrate größennordnungsmäßig 10² monoatomare Alkalischichten pro sec auf das Target.

2.3. Alkaliofen

Um bei allen Winkelinstellungen des Targets auch während des Meßvorganges ständig aufdampfen zu können, wurde ein Ofen benutzt, der es erlaubte, aus der Richtung 45° schräg über dem Lichtstrahl aufzudampfen (vgl. Fig. 1). Der Ofen hat, wie er in Fig. 2 skizziert ist, einen Ofenkörper aus massivem V2A-EDELSTAHL, der zur Wärmeisolierung an einem dünnem V2A-Rohr aufgehängt ist. Zwischen Ofen und wassergekühltem Mantel befindet sich eine doppelte Strahlungsabschirmung aus dünnem Molybdänblech. Der Ofen wurde mit Hilfe einer Tantaldrahtwicklung geheizt;

Fig. 2. Atomstrahlofen. Geregelter Heizleistung ca. 20 W bei 200°C, ca. 400 W bei 650°C. A Ofenaufhängung, B Ampullenerzdrücker, C Rillen für die Heizelemente, D Bohrung für das Thermoelement, E getrennt geheizte Düse, F Abschirmbleche, G wassergekühlter Mantel
der Heizdraht (0,3 mm \(\varnothing\)) wurde bifilar in 28 Vierloch-Keramikkapillaren eingezogen, die unter einem aufschiebbaren Mantelrohr in eingefrästen Nuten am Ofenkörper angebracht sind. Die Temperaturregelung wurde bis 350 °C mit einem schräg in den Ofensockel eingeführten Pt-Thermowiderstand, bei höheren Temperaturen mit einem NiCr-Ni-Thermoelement gemessen und elektronisch geregelt. Das Düsenröhrchen wurde separat durch eine bifilar in Keramikröhrchen und Al\(_2\)O\(_3\)-Wasserglaskitt eingeglegte Tantaldrähtwicklung geheizt.

Cs und Rb wurden in Glaspullen mit 0,5 g Füllung in den Ofen eingebracht. Im Hochvakuum wurden diese Ampullen dann zerstört, indem ein als Schraube im Ofensockel gelagerter Zerdrückeinsatz nach unten gedreht wurde. Dazu war dieser Zerdrückeinsatz über ein wärmeisolierendes Contracid-Röhrcen fest mit einem Drehstab verbunden, der durch eine O-Ring-Durchführung nach außen führte. Da K, Na und Li offen eingeführt wurden, wurde bei Photoeffektmessungen an diesen Metallen der Zerdrückmechanismus entfernt. Die Ofentemperaturen betrugen zwischen 200 und 650 °C und wurden so eingestellt, daß die Dampfdrucke der einzelnen Alkalimetalle jeweils zwischen 0,1 und 0,3 Torr lagen.\(^4\)

2.4. Elektronenoptisches Ziehsystem, Beschleunigungsrohr und Mottkammer

Die Photoelektronen wurden mit einem elektrischen Ziehfeld von ungefähr 70 V/cm abgezogen. Zur Vermeidung von Störeinflüssen des Erdmagnetfeldes war dieses auf einen kleineren Wert als 10 mOe kompensiert. Eine detaillierte Beschreibung des Ziehsystems ist in einer früheren Arbeit\(^1\) zu finden. Dort und an anderer Stelle\(^5\) wird auch das Beschleunigungsrohr und der Mottanalyzer und dessen Eichung ausführlich beschrieben. Um Zählerverluste in der Mottkammer-Elektronik bei zu hohen Photoelektronenströmen zu vermeiden, wurde als Spinpolarisationsanalyser die dünnste vorhandene Goldfolie (ca. 25 µg/cm\(^2\)) verwendet. Dies hatte auch den Vorteil, daß infolge der hohen Shermanfunktion \(S=0,36 \pm 0,02\) die Zählsymmetrie der beiden Zähler infolge der Mottstreueung selbst noch bei niedrigen Polarisationsgraden gut zu erkennen war.

3. Meßergebnisse

Wie beim Fanoeffekt am atomaren Cäsium\(^4\) lag auch hier der Vektor der Elektronenpolarisation parallel (positive Polarisation) bzw. antiparallel (negative Polarisation) zum Drehimpuls der Photonen. Dieses Ergebnis wurde experimentell ermittelt durch Drehung der Zähleranordnung in der Mottkammer um die Einschubachse der Elektronen; innerhalb der Meßgenauigkeit konnte keine Komponente des Vektors der Elektronenpolarisation senkrecht zu Photonenrehimpuls und Einschubachse festgestellt werden.

Das Meßverfahren bestand in einer Differenzmessung der Polarisation von Photoelektronen, die mit rechts- bzw. linkszirkularpolarisiertem Licht ausgelöst wurden. Dieses Vorgehen bot den Vorteil, daß das Vorzeichen der Polarisation der Photoelektronen direkt an ihrem Entstehungs-

ort ohne Eingriff in die Geometrie der Anordnung umgekehrt werden konnte. Deshalb konnten analog zu den an anderer Stelle durchgeführten Betrachtungen mit diesem Meßverfahren apparative Asymmetrien eliminiert und somit genaue Meßergebnisse gewonnen werden. Allerdings liefert dieses Differenzmeßverfahren nur dann die absolute Elektronenpolarisation, wenn diese allein bei zirkularpolarisiertem Licht und nicht etwa auch bei linear- oder unpolarisiertem Licht auftritt. Innerhalb der Meßgenauigkeit erwiesen sich jedoch Photoelektronen, die durch linear- bzw. unpolarisiertes Licht ausgelöst wurden, als unpolarisiert, was durch Vergleichsmessungen mit einem (unpolarisierten) Glühelektronenstrahl festgestellt wurde. Die hier beschriebenen Messungen zeigten, daß die Polarisation der Photoelektronen nur von Betrag und Richtung des Photonendrehimpulses abhängt.

3.1. Photoeffekt an verschiedenen Alkalimetallen — Messung der Elektronen-Spinpolarisation

In Fig. 3 ist für die Metalle Cs, Rb, K, Na und Li die Polarisation der Photoelektronen in Abhängigkeit von der Wellenlänge des den Photoprozeß erzeugenden Lichtes von der jeweiligen Emissionsgrenze bis zur Wellenlänge 2300 Å dargestellt. Aus Gründen der Lichtintensität waren

Fig. 3. Spinpolarisation der Photoelektronen. Die gestrichelten Geraden geben die langwelligen Photoemissionsgrenzen an.
Messungen bei Wellenlängen unterhalb 2300 Å nicht möglich. Die angegebenen Polarisationsgrade gelten für 100-prozentige Zirkularpolarisation des einfallenden Lichtes, d.h. bei z.B. 80% zirkularer Polarisation des Lichts betrug die gemessene Spinpolarisation der Photoelektronen nur 80% des in Fig. 3 angegebenen Polarisationsgrades. Wie die Bilder zeigen, nimmt der maximale Polarisationsgrad des Elektronen- spins gleichmäßig von den schweren zu den leichten Alkalimetallen hin ab. Er beträgt bei Cs 4,5±0,7%, Rb 2,4±0,7%, K 1,1±0,7%, während bei Na und Li im Rahmen der Meßgenauigkeit keine Spinpolarisation mehr feststellbar war. Auffällig an den in Fig. 3 dargestellten Meßergebnissen ist auch, daß sich die langwelligen Flanken und die Maxima der Polarisationskurven von den schweren zu den leichten Elementen hin nach kürzeren Wellenlängen verschieben, daß aber die kurzwelligen Flanken nahezu zusammenfallen.

3.2. Variation des Lichteinfalles und der Targettemperatur

Es mußte damit gerechnet werden, daß sich beim Eindringen des Lichtes in die Alkalischicht die Zirkularpolarisation in Richtung und Betrag änderte, etwa in der durch die Fresnelschen Formeln beschriebenen Weise, d.h. daß die Photonenpolarisation am Entstehungsort der Photoelektronen nicht mehr der vor dem Eintritt in das Metall entsprach. Deshalb wurde geprüft, ob die Polarisation der von Cs emittierten Photoelektronen (bei verschiedenen Wellenlängen des Lichts) von der Winkeleinstellung der Targetnormalen zur Lichteinfallsrichtung und von Exzentrität und Lage der Polarisationsellipse bezüglich der Targetstellung abhängig war. Zu diesem Zweck war der Targetträger drehbar und die Lichtpolarisation durch Drehung von Linearpolarisator und Viertelwellenplättchen veränderbar. Das Ergebnis war, daß weder die Drehung des Targets noch die Änderung der Lichtpolarisation im Rahmen der Meßgenauigkeit die in Fig. 3 angegebene — einer Lichtpolarisation von 100 % entsprechende — Polarisation der Photoelektronen beeinflußte. Aus diesem Ergebnis kann aber nicht unbedingt geschlossen werden, daß die polarisierten Photoelektronen von der Alkalioberfläche stammen, da sich die Metalle beim Aufdampfen auf das Target feinkristallin abschieden, so daß eine rauhe Oberfläche vorlag.

Auch die Temperatur der Alkalischicht, die zwischen −130 °C und 20 °C variiert wurde, hatte im Rahmen der Meßgenauigkeit keinen Einfluß auf die in Fig. 3 dargestellten Spinpolarisationswerte. Diese Temperaturabhängigkeit kann eventuell Hinweise für die Beantwortung der Frage liefern, ob für die Erzeugung der Spinpolarisation die thermische Besetzung von Elektronenzuständen in der Nähe der Fermikante von Bedeutung ist.
4. Diskussion von Störeinflüssen und Fehlerbetrachtung

4.1. Reinheit des Targetmaterials

Die verwendeten Alkalimetalle hatten eine Reinheit von mindestens 99%. Infolge dieser hohen Reinheit ergab sich, daß die möglicherweise vorhandenen Verunreinigungen in der aufgedampften Metallschicht im wesentlichen durch die bei dem Vakuum von 10^{-5} Torr auf das Target aufprallenden Restgasbestandteile bedingt waren. Eine Abschätzung unter Benutzung von Formeln der kinetischen Gastheorie\(^6\) ergab, daß bei den im Experiment benutzten Aufdampfraten die Reinheit der Alkalischicht auf dem Target durch das Restgas um maximal 5% herabgesetzt wurde. Dabei wurde die ungünstige Annahme gemacht, daß die Restgaspartikel einen gleichhohen Haftkoeffizienten auf dem Target haben wie die Alkaliatomte. In mehreren Vorversuchen wurde jedoch gezeigt, daß die Photoelektronen tatsächlich von der Alkalischicht stammen.

Einerseits verschwand die Photoemission praktisch bei Einstrahlung von langwelligerem Licht als der Ionisationsgrenze des jeweiligen Metalles entsprach; andererseits traten bei Oxid- oder Hydroxidschichten, die beim Belüften der Apparatur oder nach dem Unterbinden des Aufdampfens der Alkalimetallate auf dem Target entstanden, eine viel geringere Photoelektronenintensität als bei den jeweiligen Metallschichten und überhaupt keine Spinnpolarisation der Photoelektronen auf.

Eine Beeinflussung der gemessenen Spinnpolarisation durch Fanoeffekt am Atomstrahl\(^1\) war nicht zu befürchten, da die Polarisationsmaxima beim Photoeffekt an festen Alkalimetallen, wie Fig. 3 zeigt, bei Wellenlängen liegen, die viel größer als die Wellenlängen der Ionisationsgrenzen für die freien Alkaliatomte sind. Auch bei Wellenlängen, bei denen Photoeffekt sowohl am Atom als auch am festen Alkalimetal möglich ist, konnte der Beitrag der Photoelektronen aus dem Atomstrahl zur gemessenen Spinnpolarisation wegen des großen Unterschieds in der Elektronenintensität (Intensitätsverhältnis von mehr als 1:1000) vernachlässigt werden.

4.2. Systematische Fehlerquellen

Es wurde nachgewiesen, daß die gemessenen Polarisationswerte tatsächlich das Ergebnis einer echten Spinnpolarisation sind und nicht darin ihren Ursprung haben, daß der Elektronenstrahl die Goldfolie in der Mottkammer bei links- und rechtszirkularpolarisiertem Licht an verschiedenen Stellen traf und dadurch infolge der jeweils verschiedenen Raumwinkel zu den beiden Halbleiterzählern die Streuasymmetrie zustande kam\(^7\). Dazu wurde einerseits die Polarisation des einfallenden

Lichtes durch Drehung bzw. Entfernen des Viertelwellenplättchens und des Linearpolarisators, andererseits die Shermanfunktion der Mottkammer durch Benutzung verschieden dicker Goldstreufolien verändert. Beide Variationen ergaben keine anderen als die in Fig. 3 dargestellten Meßergebnisse. Weiterhin wurde festgestellt, daß sich der beleuchtete Targetfleck beim Drehen des Viertelwellenplättchens nicht verschob (Meßgenauigkeit 0,1 mm). Außerdem wurden zur Überprüfung der Reinheit des Atomstrahles und der Funktionstüchtigkeit des elektronenoptischen Ziehsystems und der Mottkammer Kontrollmessungen des Fanoeffektes am atomaren Cäsium mit einer gemessenen Spinpolarisation von 100 % durchgeführt.

4.3. Quantitative Fehlerbetrachtung

Wie in Fig. 3 dargestellt, beträgt der absolute Gesamtfehler der Spinpolarisation ±0,7 %. Er setzt sich aus folgenden Teilfehlern zusammen:

1. Der größte Beitrag war bedingt durch die apparative Reproduzierbarkeit der Messungen von ±0,5 % Spinpolarisation. Dieser Wert wurde aus der Bestimmung der Gaußschen Standardabweichung bezüglich der Einzelmessungen (2mal 1 min Meßzeit) sowohl für die polarisierten Photoelektronen als auch für unpolarisierte Glühelektronen ermittelt. Er enthält sowohl Veränderungen infolge apparativer Kurzzeitschwankungen (z. B. in der Zählelektronik) als auch Meßergebnisverschiebungen verschiedener Meßtage (z. B. infolge der Änderung der Targetstruktur).

2. Meßungenaugigkeit der optischen Zirkularpolarisation von ±5 % Relativfehler.

3. Meßungenaugigkeit der Shermanfunktion von ±5 % Relativfehler.

4. Berücksichtigung des Einflusses von Streulicht mit maximal ±5 % Relativfehler (je nach Wellenlänge).

5. Statistischer Fehler für die Zählung der gestreuten Elektronen von ±0,1 % Spinpolarisation.

Für den in Abschnitt 3 erwähnten Vergleich mit Glühelektronen ergab sich eine zusätzliche Unsicherheit infolge der notwendigen appara-

5. Diskussion der Meßergebnisse

Da Betrag und Richtung der Elektronenpolarisation nur von Betrag und Richtung der Lichtpolarisation abhängt, ist die Entstehung der Spinpolarisation nur in einer Wechselwirkung des Photons mit dem Photoelektron zu sehen. Deshalb können alle Wechselwirkungen des Elektrons mit anderen Partnern (wie z.B. mit dem Gitter) eine schon vorhandene Spinpolarisation allenfalls wieder verringern. Ein Vergleich der Meßergebnisse, wie sie zusammenfassend in Fig. 4 dargestellt sind, mit denen beim Fanoeffekt an freien Atomen\(^1\) zeigt die folgenden drei wesentlichen Unterschiede: Bei fester Alkalischicht ist

a) das Polarisationsmaximum zu größeren Wellenlängen hin verschoben, bei Cs liegt es sogar in dem bequem zugänglichen sichtbaren Wellenlängenbereich,

b) die Spinpolarisation viel kleiner,

c) die Photoelektronenintensität viel größer (Faktor \(10^3\)).

![Diagramm](image)

Fig. 4. Spinpolarisationskurven und Plasmonenergien. Oben sind die gemessenen Polarisationsgrade dargestellt. Der Fehlerbalken in der rechten oberen Ecke gilt für alle Kurven. Darunter sind für die einzelnen Alkalimetalle die Wellenlängen angegeben, bei denen die Energie eines Photons gerade zur Anregung eines Plasmons, bzw. zur Anregung eines Plasmons und zusätzlicher Photoemission eines Elektrons ausreicht.
Die auffällige Verknüpfung des systematischen Anstieges der Spinpolarisierung mit der Ordnungszahl des Targetelements läßt keinen Zweifel daran, daß analog zum Fanoeffekt auch hier die Spin-Bahn-Kopplung für die Entstehung der Elektronenpolarisation verantwortlich ist. Eine quantitative Theorie, zu der Ansätze vorhanden sind, ist aber schwierig. Sie hätte folgende Fragen zu klären:

1. An welchem Ort entstehen die zum Teil polarisierten Photoelektronen? Liegt für die polarisierten Photoelektronen ein reiner Volumen- oder auch ein Oberflächeneffekt vor?

2. Läßt sich ein Zusammenhang zwischen der Bandstruktur und der Polarisierung der Photoelektronen herstellen?

3. Genügt vielleicht schon die relativ kleine Spin-Bahn-Kopplung der Leitungselektronen, die offenbar mitverantwortlich ist für die Abweichung ihres g-Faktors vom Wert für das freie Elektron, um die Polarisation der Photoelektronen zu erklären?

4. Welche Wechselwirkungen, die für eine schon vorhandene Elektronenpolarisation depolarisierende Wirkung haben können, tre-

ten beim Transport der Photoelektronen durch Metall und Metalloberfläche auf?

An dieser Stelle sei darauf hingewiesen, daß vor einiger Zeit auch beim inneren Photoeffekt in einem Festkörper (p-GaSb) eine Spinpolarisation der mit zirkularpolarisiertem Licht ins Leitungsband gehobenen Elektronen gefunden wurde. Sie wurde durch Messung der optischen Polarisation des Rekombinationsleuchtens quantitativ nachgewiesen27.

Wir wollen auch nicht unerwähnt lassen, daß der in Fig. 4 dargestellte Vergleich zwischen den Wellenlängen der maximalen Spinpolarisation mit den bekannten Anregungsschwellen für Plasmonenerzeugung28 einen Zusammenhang zwischen beiden Erscheinungen anzudeuten scheint. Wir halten diese Übereinstimmung für Zufall, da wir keinen Zusammenhang zwischen beiden Erscheinungen sehen.

Herrn Professor Dr. R. Nossek sind wir für seine wertvollen Diskussionsbeiträge zu großem Dank verpflichtet, der Deutschen Forschungsgemeinschaft danken wir für apparative Hilfsmittel.