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The projection of the velocity vectors of objects moving in
three-dimensional space on the image plane of an eye or a camera can
be described in terms of a vector field. This so-called 2-D velocity
field is time-dependent and assigns the direction and magnitude of a
velocity vector to each point in the image plane. The 2-D velocity
field, however, is a purely geometrical concept and does not directly
represent the input site of a visual information processing system. The
only information available to a visual system is given by the time-
dependent brightness values as sensed in the image plane by
photoreceptors or their technical equivalents. From spatio-temporal
coherences in these changing brightness patterns motion information is
computed. This poses the question about whether the spatio-temporal
brightness distributions contain sufficient information to calculate the
correct 2-D velocity field. Here we show that the 2-D velocity field

generated by motion parallel to the image plane can be computed by
purely local mechanisms.

In the literature on both biological motion processing and
computer vision there is often stated that the 2-D velocity field cannot
be computed by any local mechanism [1-6]. This conclusion is mainly
based on approaches that implicitly regard a moving contour as nothing
but a series of straight line segments which are each seen through a
small aperture by some local motion analysing mechanism (see Fig.l).
Information on the local curvature of the contour is, thus, not taken
into account. From these mathematical approximations it is then
concluded that all that a local mechanism can do is to determine the
component of the local velocity vector perpendicular to the contour
line, ie. in the direction of the brightness gradient. If F(x,y,t) =
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F[x+s(x,y,t); y+r(x,y,t)] represents the brightness of the moving pattern
as a function of the spatial location x,y and time t, where s(x,y,t) and
r(x,y,t) denote the time-dependent displacement of the pattern in the
x- and y-direction, respectively, the mapping of the 2-D velocity
vectors v(x,y,t) = [ds(x,y,t)/dt; dr(x,y,t)/dt] on their components along
the brightness gradient vectors vJ*(x,y,t) can be represented by the
transformation
2
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(The subscripts denote the partial derivatives of F with respect to x or
y). Since this transformation is not one-to-one, an infinite number of
velocity vectors is mapped onto the same v, This ambiguity is
commonly refered to as the aperture problem [1-5]. Using this type of
representation of motion information, the correct 2-D velocity field,
therefore, cannot be measured locally. Instead, the correct 2-D velocity
of moving objects or pattern segments can only be computed in a
further stage of analysis by combining the motion measurements from
different locations and taking some global constraints into account [3-
7.

These conclusions, however, should not be generalized, as is
often done in the literature [2-5], to motion detection schemes which
yield different representations of motion information. In particular, the
so-called aperture problem is just a by-product of a specific
mathematical approximation of the spatio-temporal geometry of a
moving contour. In contrast we will show in the following that the
correct 2-D velocity field can, in principle, be calculated by purely
local mechanisms without reference to additional global constraints.

Our approach to these problems differs from the
aforementioned ones. It is based on a movement detection scheme, the
so~called correlation-type of movement detector, which has originally
been derived from experiments on motion vision in insects [8,9], but in
the meantime has been shown to account for certain aspects in motion
vision of other species including man [10-13]. The visual field is
assumed to be covered by a two-dimensional array of local movement
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detectors which evaluate a kind of spatio-temporal cross-correlation
between the light intensity fluctuations at two neighbouring points in
space. More specifically, each movement detector has two spatially
displaced input stages and consists of two mirror-symmetrical subunits
(Fig.2). The input signal of one branch of each subunit is delayed in
some way and multiplied with the instantaneous signal of the
neighbouring input channel. The final output of the detector is then
given by the difference between the outputs of the two subunits. Of
course, a single movement detector senses only those components of
motion which result in intensity changes along the orientation of its
axis. Therefore, the outputs of a pair of differently oriented detectors
at each retinal location are combined to a vector in order to obtain a
two-dimensional representation of local motion (see Fig.3). The total of
these local vectors, thus, represents a vector field which indicates the
direction and magnitude of the local motion measurements.

Although computed by the movement detectors from the
temporal modulations at their input stages, the field of local motion
measurements can be related mathematically to the corresponding 2-D
velocity field. This transformation can be described best on the basis
of a formal approach which is characterized by a transition from an
array of movement detectors with a discrete spatial sampling base to a
continuous field of detectors with the distance between the
neighbouring retinal inputs being infinitesimally small [14-17]. With
the pattern function F()gk,y,t) and the 2-D velocity vectors v(x,y,t) the
local response vectors v (x,y,t) of the movement detection system are
given, in a first approximation, by the following transformation [16,17]

v =T-v. (2)

T represents a tensor which is proportional to the detector delay ¢ and
has elements depending in a non-linear way on the pattern brightness

function F and its first and second partial derivatives with respect to x
and v
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Fig. 1 An illustration of the so-called aperture problem in.mono.n
computation. A straight line segment moved with the veloc;ty v is
viewed through a local aperture. The only iomponent 'of mptlon that
can be computed is oriented perpendicular v to the orientation of the

segment.

Fig. 2 A local movement detector consisting of two spatially dfsplaced
input stages and two mirror-symmetrical subunits. The 11}put signal of
one branch of each subunit is delayed by a brief time mtegval € and
multiplied with the undelayed signal of the nelg'hbourmg input
channel. The output of the detector is given by the difference of the
outputs of the two subunits. Therefore, it forms a movement direction
selective device.

Fig. 3 A possible procedure for computing the correct 2-D veloc.1ty
locally. A contrast element of a brightness pattern F moves according
to the vector v and a pair of motion detectors reponds. Their outputs
form the two components of the response vef:tor V. and Ivf a}ie
related by a two-dimensional tensor T, as descrx})ed in -the-text. ! the
elements of the tensor T which contain spatial derivatives of the
brightness pattern function are computed in parallel to_the m(c)ivenrls:t
detector outputs and if the matrix of the tensor can be inverted,v may
be computed,
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By comparing the transformation of the 2-D velocity field described by
eguations (2) and (3) and equation (1), respectively, it is obvious that
v usually deviates from the direction of the brightness gradient. This
difference depends in a characteristic way on the curvature of the
brightness function of the moving pattern. Moreover, the local
response vectors, in general, also do not coincide with the correct 2-D
velocity vectors. The occurrence of the second partial derivatives of
the pattern brightness function with respect to the spatial coordinates
might be surprising at first sight, since (in its discrete form) a
movement aetector samples the visual surround at only two spatial
locations (see Fig.2). However, at least three points are necessary for
an approximation of a second derivative. Due to the memory-like
operation of the delay in one branch of each detector subunit (see

Fig.2) three independent points of the pattern brightness function are
simultaneously represented.

Because of the characteristic dependence of T on the curvature
of the pattern brightness function, the map of v on v* given by the
transformation (2) is one-to-one for most stimulus patterns. This is the
case, if the determinant of T does not vanish. T can then be inverted
and equation (2) solved for v

-] *
v=T"".vy . (4)
In this way the correct 2-D velocity field can be calculated by using
only local information about the pattern (see Fig.3).

There is only one special class of brightness pattern functions
for which T cannot be inverted at any spatial location and,
consequently, leads to ambiguous local motion measurements. This is
the case if the determinant of T vanishes. These pattern functions can
be analyzed most conveniently by the substitution F(x,y,t) = eq(x,y,t),
which is possible for all F > 0 [17]. In other words, q(x,y,t) represents

the logarithm of the brightness pattern function F(x,y,t). Using this
substitution the tensor in equation (3) reads

T=c. e (5)
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and its determinant vanishes if the following condition is satisfied s

det T = Gy Qyy = Oyy° = 0 - (6)

Again, the subscripts denote partial derivatives with respect to x and y.
The only solutions of this partial differential equation for x and y are
sggtial brightness distributions the logarithm of which represents
sqcalled developable surfaces [18]. Intuitively, a developable surface is
one that can be cut open and flattened out. Or more precisely, at any
location on a developable surface one can find a tangent that lies in
the surface and has the same surface normal for all of its points.
Spatial brightness distributions which, on a logarithmic scale, can be
described as cylindrical, conical or tangent surfaces are the only
possible examples of developable surfaces. For a cylindrical surface the

tangents are all parallel, for a conical surface the tangents intersect in
evelopable surface the surface

a common point and for a tangent d
makes contact with one point of an arbitrarily given space curve. In

(0
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rface of the cylinder class. The

Fig. 4 An example of a developable su
= q(x,y), whereas the

upper part of the figure shows the surface q
lower part the corresponding surface F = F(x,y).
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Fig. 5 An example of a developable surface of the cone class. The

upper part of the figure shows the surface q = q(x,y) and the lower
part the corresponding surface F = F(x,y).

Fig. 6a An example of 3 developable surface of the tangent class.

a) The upper part of the figure shows the outer sheet and the lower
part, the inner sheet of the surface q = q(x,y).
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Figs. 4 to 6 examples of each of the three classes of developable
surfaces are given.

Natural brightness patterns usually cannot be represented
globally by developable surfaces and, therefore, do not solve equation
(6) for all x and y. However, since we focus here on local mechanisms,
the possibility that the determinant of T vanishes only locally has also
to be taken into account. If this happens for particular values X,y and
t, equation (2) cannot be solved at just this location and time. This
suggests that apart from certain locations, the correct 2-D velocity
field can usually be recovered. Only at these locations one is
confronted with equivalent ambiguities in the local motion
measurements as described above in connection with the so-called
aperture problem. On the basis of the motion detection scheme used
here these ambiguities are usually restricted to small segments of
natural brightness patterns. Spatial integration over an array of local
motion detectors is a simple means to overcome this remaining problem
in most cases. It should be noted that these conclusions are solely based

Fig. 6b An example of a developable surface of the tangent class.
The upper part of the figure shows the corresponding outer sheet and
the lower part the corresponding inner sheet of the surface F = F(x,y).
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on a mathematical analysis. It was not intended here to address the
problems which might arise when equation (4) is tried to be solved
numerically.

Of course, the correct 2-D velocity field can only be computed
from the local motion measurements by using equation (4), if the
elements of T are explicitly known. These have to be derived from
separate measurements in parallel to motion detection. It should be
emphasized that while we have, in the correlation-type of biological
movement detectors, a physiologically established agd technically
plausible implementation of the mechanism that yields v , it is beyond
the scope of this article to propose algorithms which yield the elements
of the tensor. A technical solution is comparatively simple, since
algorithms approximating spatial derivatives are in common use in
computer vision [1,19].

In conclusion, there is no principle reason why it should
generally be impossible to compute the correct 2-D velocity field for
moving stimulus patterns on the basis of local mechanisms alone. The
correlation-type of movement detectors as derived from biological
systems form an appropriate basis to accomplish this task. This is
because it yields local motion measurements which usually contain
sufficient information on the relevant properties of the stimulus
pattern.
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