The Indecomposable Representations of the Dihedral 2-Groups

Claus Michael Ringel

Let K be a field. We will give a complete list of the normal forms of pairs a, b of endomorphisms of a K-vector space such that $a^2 = b^2 = 0$. Thus, we determine the modules over the ring $R = K\langle X, Y \rangle/(X^2, Y^2)$ which are finite dimensional as K-vector spaces; here (X^2, Y^2) stands for the ideal generated by X^2 and Y^2 in the free associative algebra $K\langle X, Y \rangle$ in the variables X and Y.

If G is the dihedral group of order $4q$ (where q is a power of 2) generated by the involutions g_1 and g_2, and if the characteristic of K is 2, then the group algebra KG is a factor ring of R, and the KG-modules kG,M which have no non-zero projective submodule correspond to the K-vector spaces (take the underlying space of kG,M) together with two endomorphisms a and b (namely multiplication by $g_1 - 1$ and $g_2 - 1$, respectively) such that, in addition to $a^2 = b^2 = 0$, also $(ab)^q = (ba)^q = 0$ is satisfied.

We use the methods of Gelfand and Ponomarev developed in their joint paper on the representations of the Lorentz group, where they classify pairs of endomorphisms a, b such that $ab = ba = 0$. The presentation given here follows closely the functorial interpretation of the Gelfand-Ponomarev result by Gabriel, which he exposed in a seminar at Bonn, and the author would like to thank him for many helpful conversations.

1. Description of the Indecomposable Modules

We are interested in the modules over the ring $R = K\langle X, Y \rangle/(X^2, Y^2)$ which are finite dimensional as K-vector spaces. Denote this category by \mathfrak{M}. If a and b are the canonical images of X and Y in R, respectively, then an R-module is given by a triple $M = (M, a, b)$ where M is a K-vector space, and a and b are endomorphisms of kM, also operating from the left on M with $a^2 = b^2 = 0$. In this section, we are going to give a complete list of the indecomposable objects in \mathfrak{M}.

Consider now $a, a^{-1}, b,$ and b^{-1} as “letters” of a formal language, and let $(a^{-1})^{-1} = a$ and $(b^{-1})^{-1} = b$. If l is a letter, we write l^* to mean “either l or l^{-1}”. A word $C = l_1 \ldots l_n$ is given by the sequence l_1, \ldots, l_n of letters subject to the condition that $l_i = a^*$ (for $1 \leq i < n$) implies $l_{i+1} = b^*$ and similarly that $l_i = b^*$ implies $l_{i+1} = a^*$. The number $n = |C|$ is called the length of C. Thus, for example, $ab^{-1}aba^{-1}$ is a word and has length 5. Also, we include into the set \mathcal{W} of all words two words 1_a and 1_b of length 0, with $(1_a)^{-1} = 1_b$ and $(1_b)^{-1} = 1_a$. If $C = l_1 \ldots l_n$ is a word, then its inverse is given by $C^{-1} = l_n^{-1} \ldots l_1^{-1}$. Let ϱ be the equivalence relation on \mathcal{W} which identifies every word with its inverse, and let $\mathcal{W}' = \mathcal{W}/\varrho$.
If \(C = l_1 \ldots l_n \) and \(D = e_1 \ldots e_m \) are two words with non-zero length, then the product is given by \(CD = l_1 \ldots l_n e_1 \ldots e_m \); provided this is again a word. In particular, if \(C \) has even length \(\pm 0 \), then the powers \(C^m \) do exist (\(m \geq 2 \)). Let \(\mathcal{W}^{-} \) be the subset of \(\mathcal{W}^{-} \) consisting of all words of even length \(\pm 0 \) which are not powers of words of smaller length. If \(C = l_1 \ldots l_n \) is in \(\mathcal{W}^{-} \), denote by \(C(i) \), \(0 \leq i \leq n - 1 \), the cyclic permuted words, thus \(C(i) = C \), \(C(1) = l_1 \ldots l_n l_1 \), up to \(C(n-1) = l_n l_1 \ldots l_{n-1} \). Let \(\varphi \) be the equivalence relation on \(\mathcal{W}^{-} \) which identifies with every word \(C \) the cyclic permuted words \(C(i) \) and their inverses \(C(i)^{-1} \). Thus, if \(C = ab^{-1} ab \), then the equivalence class of \(C \) with respect to \(\varphi \) contains precisely the words \(ab^{-1} ab, b^{-1} aba, abab^{-1}, bab^{-1} a, b^{-1} a^{-1} ba, a^{-1} b^{-1} a^{-1} b, ba^{-1} b^{-1} a^{-1}, a^{-1} ba^{-1} b^{-1} \). Let \(\mathcal{W}^{-} = \mathcal{W}^{-} / \varphi \).

To every element of \(\mathcal{W}^{-} \), we are going to construct a new indecomposable module, called a module of the first kind. Namely, let \(C = l_1 \ldots l_n \) be a word of length \(n \). Let \(M(C) \) be given by a \(K \)-vector space of dimension \(n + 1 \), say with base \(z_0, \ldots, z_n \) on which \(a \) and \(b \) operate according to the following schema:

\[
K z_0 \xrightarrow{l_1} K z_1 \xrightarrow{l_2} K z_2 \cdots K z_{n-1} \xrightarrow{l_n} K z_n.
\]

For example, if \(C = ab^{-1} aba^{-1} \), we have the following schema:

\[
K z_0 \xrightarrow{a} K z_1 \xrightarrow{b} K z_2 \xrightarrow{a} K z_3 \xrightarrow{b} K z_4 \xrightarrow{a} K z_5.
\]

(Note that we have to adjust the direction of the arrows according to whether the letter \(l_i \) is equal to \(a \) or \(a^{-1} \), or to \(b \) or \(b^{-1} \), and this indicates how the base vectors \(z_i \) are mapped into each other or into zero. Namely, \(z_1 \) goes under \(a \) onto \(z_0 \), and under \(b \) onto \(z_2 \), \(z_3 \) goes under \(a \) onto \(z_2 \), and so on. If no condition is specified, then the base vector goes to zero, thus \(z_0, z_2, \) and \(z_5 \) go to zero both under \(a \) and \(b \), whereas \(z_3 \) goes to zero under \(b \), only. In this way, we get an \(R \)-module, and it is obvious, that \(M(C) \) and \(M(C^{-1}) \) are isomorphic, [or equal, since \(M(C) \) is only defined up to isomorphism].

Next, we construct the modules of the second kind. Let \(\varphi \) be an automorphism of the (finite dimensional) \(K \)-vector space \(V \). Also, let \(C \) be a word in \(\mathcal{W}^{-} \), say \(C = l_1 \ldots l_n \). Let \(M(C, \varphi) \) be given as a vector space by \(M(C, \varphi) = \bigoplus_{i=0}^{n-1} V_i \) with \(V_i = V \) on which \(a \) and \(b \) operate according to the following schema:

\[
V_0 \xrightarrow{l_1 = \varphi} V_1 \xleftarrow{l_2 = \text{id}} V_2 \cdots V_{n-2} \xrightarrow{l_{n-1} = \text{id}} V_{n-1}.
\]

For example, if \(C = ab^{-1} ab \), we have the schema:

\[
V_0 \xrightarrow{a = \varphi} V_1 \xrightarrow{b = \text{id}} V_2 \xleftarrow{a = \text{id}} V_3.
\]

which shows that \(V_1 = V \) is mapped under \(b \) identically onto \(V_2 = V \), and similarly, that \(V_2 = V \) is mapped under \(a \) identically onto \(V_2 = V \). On the other hand, \(V_1 \) is mapped under a onto \(V_0 = V \) by the isomorphism \(\varphi \). Again, where no condition is specified, the elements go to zero, thus, for example, \(V_3 \) is mapped under \(b \) into zero. In this way, we get an \(R \)-module. If \((V, \varphi) \) and \((V', \psi) \) are isomorphic as
vectorspaces with automorphisms (as $K[T, T^{-1}]$-modules), the R-modules $M(C, \varphi)$ and $M(C, \psi)$ are isomorphic, for fixed C. Also, it is easy to see that for two words C and D of W' which are equivalent with respect to φ', and fixed φ, the modules $M(C, \varphi)$ and $M(D, \varphi)$ are isomorphic.

Theorem. The modules $M(C)$ with C in W' and the modules $M(C, \varphi)$ with C in W'' and φ an indecomposable automorphism of a vector space, furnish a complete list of the indecomposable objects in \mathfrak{M}. No module of the first kind is isomorphic to a module of the second kind. The modules $M(C)$ and $M(D)$ of the first kind are isomorphic if and only if C and D belong to the same equivalence class with respect to φ, the modules $M(C, \varphi)$ and $M(D, \psi)$ of the second kind are isomorphic if and only if C and D belong to the same equivalence class with respect to φ', and φ and ψ are isomorphic as automorphisms of vectorspaces.

As a consequence, the number of isomorphism classes of indecomposable R-modules of given dimension d is as follows: if d is odd, there are precisely 2^{d-1} classes, whereas, if d is even and K is infinite, the number of classes is equal to the cardinality of K.

2. Reminder on Relations

A relation on a vectorspace V is a subspace C of $V \times V$. For example, if $\alpha : V \to V$ is an endomorphism, then we may consider α as the relation $\{(x, \alpha x) | x \in V\}$. If C is a relation on V, then C^{-1} is given by $\{(x, y) | (y, x) \in C\}$. Also, if C and D are relations on V, then $CD = \{(x, z) | (x, y) \in D \text{ and } (y, z) \in C\}$ for some $y \in V$. If x is an element of V, and C a relation on V, we write Cx for $\{y \in V | (x, y) \in C\}$, and similarly, for a subset U of V, let $CU = \{y \in V | \text{there is } x \in U \text{ with } (x, y) \in C\}$.

We will use only relations which are of the form $C = I_1 \ldots I_n$ where I_i or I_i^{-1} is a mapping $V \to V$. Note that in this case the definitions mentioned above coincide with the usual ones.

If C is a relation on V, let $C' = \bigcap C^*0_V$ ("the stable kernel" of C^{-1}) and let $C'' = \bigcap C^*C$ ("the stable range" of C). Then there is the following important result.

Lemma. If C is a relation on V, there are subspaces U and W of V such that $V = U \oplus W$, and $C = [C \cap (U \times U)] \oplus [C \cap (W \times W)]$, with $C \cap (U \times U)$ the graph of an automorphism of U, and $C' \oplus U = C''$.

The lemma can easily be derived from the well-known classification of normal forms of relations on vector spaces.

Corollary. If C is a relation on V, then C induces on C''/C' an automorphism φ with $\varphi(x + C') = (C x \cap C'') + C'$, for $x \in C''$.

The relation φ on C''/C' is called the regular part of C, and the lemma asserts that the regular part of a relation splits off.

Corollary. If C is a relation on V, and $C' \oplus U = C''$ with $C \cap (U \times U)$ the graph of an automorphism of U, then also $(C^{-1})' \oplus U = (C^{-1})''$, and $[C' + (C^{-1})'] \oplus U = C'' + (C^{-1})''$.

Let us mention at the end a rather useful (but trivial) result.

Lemma. Let \(a : V \to V \) be an endomorphism with \(a^2 = 0 \). Let \(U_1 \subseteq U_2 \subseteq V \) be subspaces. Then
\[
\dim U_2/U_1 \geq \dim aU_2/aU_1 + \dim a^{-1}U_2/a^{-1}U_1.
\]

Proof. The multiplication by \(a \) defines isomorphisms
\[
a^{-1}U_2/a^{-1}U_1 \to [(U_2 \cap aV) + U_1]/U_1,
\]
and
\[
U_2/[U_2 \cap (a^{-1}0 + U_1)] \to aU_2/aU_1.
\]

On the other hand, we have the following inclusions:
\[
U_1 \subseteq (U_2 \cap aV) + U_1 \subseteq U_2 \cap (a^{-1}0 + U_1) \subseteq U_2.
\]

3. The Functors Involved in the Proof

We want to apply the following lemma in order to prove the main theorem.

Lemma. Let \(I \) be an index set. Let \(\mathcal{M} \) and \(\mathcal{A}_i (i \in I) \) be abelian categories, and let \(S_i : \mathcal{A}_i \to \mathcal{M} \) and \(F_i : \mathcal{M} \to \mathcal{A}_i \) (\(i \in I \)) be additive functors such that

(i) \(F_i S_i \simeq \text{id}_{\mathcal{A}_i} \) and \(F_j S_i = 0 \), for \(i \neq j \) in \(I \).

(ii) The set \(\{ F_i \mid i \in I \} \) is locally finite and reflects isomorphisms.

(iii) For every \(M \) in \(\mathcal{M} \) and every \(i \in I \), there is a map \(\gamma_{i,M} : S_i F_i(M) \to M \) such that \(F_i(\gamma_{i,M}) \) is an isomorphism.

Then the indecomposable objects in \(\mathcal{M} \) are of the form \(S_i(A) \) with \(A \) indecomposable in \(\mathcal{A}_i \), all those objects are indecomposable, and \(S_i(A) \) and \(S_j(B) \) are isomorphic if and only if \(i = j \) and \(A \) is isomorphic to \(B \) in \(\mathcal{A}_i \).

Here, the set \(\{ F_i \} \) is called locally finite, provided for every \(M \) in \(\mathcal{M} \) there is only a finite number of indices \(i \) with \(F_i(M) \neq 0 \). And it is said to reflect isomorphisms provided every map \(\alpha \) in \(\mathcal{M} \) for which \(F_i(\alpha) \) is an isomorphism for all \(i \in I \), is itself an isomorphism.

Proof. Since \(\{ F_i \} \) is locally finite, the sum \(\bigoplus_i S_i F_i(M) \) exists, and we get a map \((\gamma_{i,M}) : \bigoplus_i S_i F_i(M) \to M \), which becomes an isomorphism under all the functors \(F_i \) by the second part of (i) and (iii). By (ii), \(M \) is isomorphic to \(\bigoplus S_i F_i(M) \).

Now it is easy to see that the functor \((F_i) : \mathcal{M} \to \prod \mathcal{A}_i \) is a representation equivalence. Namely, by assumption, it reflects isomorphism. By (i), every object of the target category is isomorphic to an image under this functor, and the functor is full using (i) and the first part of the proof.

Let us describe the situation where we want to apply the lemma. For the moment, we will consider an index set which is far too big, so that the second condition of (i) is not satisfied. Then, in the last section, we will select an appropriate subset. Now, take as index set the disjoint union of \(\mathcal{W}^n \) and the set of all pairs \((C, D)\) of words in \(\mathcal{W} \) such that \(C^{-1}D \) is again a word. We have defined the product of two words only in cases where both words have non-zero length. In addition, we define products with \(1_a \) and \(1_b \) as follows: let \(1_a a = a, 1_a a^{-1} = a^{-1}, b 1_a = b \),
$b^{-1}1_a = b^{-1}$, and similarly for longer words. In the same way, 1_b shall be right unit for words with last letter a^*, and left unit for words with first letter b^*.

If $C, D, C^{-1}D$ are words, then let $\mathcal{H}_{C,D} = k\mathcal{M}$, the category of all finite dimensional K-vector spaces. If C is in \mathcal{W}^-, let $\mathcal{H}_C = k[T,T^{-1}]\mathcal{M}$, that is, the category of all $K[T,T^{-1}]$-modules which are finite-dimensional as K-vector spaces, or, equivalently, the category of automorphisms of finite dimensional K-vector spaces.

Again, if $C, D, C^{-1}D$ are words, define the functor $S_{C,D} : \mathcal{H}_{C,D} \to \mathcal{M}$ by $S_{C,D}(kK) = M(C^{-1}D)$. Thus, for an arbitrary (finite dimensional) vector space V, we have

$$S_{C,D}(V) = \bigoplus_{i=1}^n V_i$$

with $V_i = V$, on which a and b act according to the schema

$$V_0 \leftarrow_{l_1(=\text{id})} V_1 \cdots V_{n-1} \leftarrow_{l_n(=\text{id})} V_n,$$

where $C^{-1}D = l_1 \cdots l_n$. And, if C is in \mathcal{W}^-, let $S_C(V, \varphi) = M(C, \varphi)$, where φ is an automorphism of the vector space V.

Our next goal is to describe several functors $\mathcal{M} \to k\mathcal{M}$. Recall that the set of all such functors is an abelian category, and that, moreover, it is (partially) ordered by $F \leq G$ iff $F(M) \leq G(M)$ for all M in \mathcal{M}.

The two letters a and b will be called the direct letters, whereas the letters a^{-1} and b^{-1} are said to be inverse. If C is a word, there is precisely one direct letter d such that Cd is again a word. Let $C^{-1}(M) = CdM$ and $C^+(M) = Cd^{-1}0_M$, for M in \mathcal{M}. In this way, we define two functors from \mathcal{M} into $k\mathcal{M}$.

Lemma. Let d be a letter and C, D, CdD be words. Then we have the following relation

$$CdD^- \leq CdD^+ \leq C^- \leq C^+ \leq Cd^{-1}D^- \leq Cd^{-1}D^+.$$

Proof. Let e be the direct letter with De a word. We have for every M in \mathcal{M}, $eM \leq e^{-1}0_M$, and $dM \leq d^{-1}0_M$, since both a and b operate on M with $a^2 = 0 = b^2$.

This gives the first, the third and the last inclusion. But obviously, $CdD^+(M) = CdDe^{-1}0_M \leq CdM = C^{-1}(M)$, and $C^+(M) = Cd^{-1}0_M \leq Cd^{-1}DeM = Cd^{-1}D^-(M)$, which gives the remaining inclusions.

Also, consider an element C of \mathcal{W}^+. Note that for every M in \mathcal{M}, we have the following inclusions

$$CO_M \leq C^20_M \leq \cdots \leq C^n0_M \leq \cdots \leq C^nM \leq \cdots \leq C^2M \leq CM,$$

thus we also have

$$C'(M) = \bigcup_n C^n0_M \leq C''(M) = \bigcap_n C^nM,$$

and obviously, C' and C'' are again functors from \mathcal{M} into $k\mathcal{M}$.

Denote by \mathcal{W}_a the subset of \mathcal{W}^+ which contains 1_a and all words with first letter of the form a^*. Similarly, we may define \mathcal{W}_b, thus \mathcal{W} is the disjoint union of \mathcal{W}_a and \mathcal{W}_b. Also, let $\mathcal{W}_a' = \mathcal{W}_a \cap \mathcal{W}^+$ and $\mathcal{W}_b' = \mathcal{W}_b \cap \mathcal{W}^+$.

Let \mathcal{W}_a^- be the set of all functors $\mathcal{M} \to k\mathcal{M}$, which are either of the form $(D^+ + C^-) \cap C^+$ or $(D^- + C^+) \cap C^+$ with C in \mathcal{W}_a and D in \mathcal{W}_b, or which are of the form C' or C'' with C in \mathcal{W}_a^+.
Now \mathcal{W}_a is an ordered set, and we will show that it even is a chain. Given an arbitrary ordered set T, an interval $[t_1, t_2]$ is given by two elements t_1, t_2 in T such that $t_1 \leq t_2$. Also, two intervals $[t_1, t_2]$ and $[t_3, t_4]$ are said to avoid each other, provided either $t_2 \leq t_3$ or else $t_4 \leq t_1$.

Proposition. The ordered set \mathcal{W}_a is a chain, and all the intervals $[(D^- + C^-) \cap C^+, \ (D^+ + C^-) \cap C^+]$ with $C \in \mathcal{W}_a$ and $D \in \mathcal{W}_b$, and $[C^-, C^+]$ with $C \in \mathcal{W}_a$ avoid each other.

Proof. Define an order relation on \mathcal{W}_a by $C < D$ provided either $C = DdE$, or $D = Cd^{-1}E$, or $C = C_1 dE_1$ and $D = C_1 d^{-1}E_2$ for suitable words C_1, E, E_1, E_2 and a direct letter d. Obviously, \mathcal{W}_a becomes a chain, and the previous lemma shows that $C < D$ in \mathcal{W}_a implies $C^+ \leq D^-$ in the set \mathcal{F} of all functors. Thus, for $C \neq D$ in \mathcal{W}_a, the intervals $[C^-, C^+]$ and $[D^-, D^+]$ avoid each other in \mathcal{F}.

Also, if $C \in \mathcal{W}_a$ and $D \in \mathcal{W}_a$, then one of the following two possibilities occurs. Either $D < C^n$ for large n, then $D^+ \leq C^+$. Namely, if $C^n = Dd^{-1}E$ for some direct letter d and some word E, then

$$D^+(M) = Dd^{-1}0_M \leq Dd^{-1}E0_M = C^n 0_M \leq C^+(M).$$

Otherwise $D = D_1 dE_1$ and $C^n = D_1 d^{-1}E_2$ for suitable words D_1, E_1, E_2 and a direct letter d, and using the previous case, we have $D^+ \leq D_1^+ \leq C^+$. The second possibility is that $C^n < D$ for large n. Then we have $C^n \leq D^-$ in \mathcal{F}. Namely, if $C^n = DdE$ for some word E and a direct letter d, then

$$C^n(M) \leq C^n M = DdEM \leq DdM = D^-(M),$$

and otherwise $C^n = D_1 dE_1$ and $D = D_1 d^{-1}E_2$ implies $C^n \leq D_1^+ \leq D^-$. As a consequence, the intervals $[D^-, D^+]$ with $D \in \mathcal{W}_a$ and the intervals $[C^-, C^+]$ with $C \in \mathcal{W}_a$ avoid each other. Also, it follows that the intervals $[C^-, C^+]$ and $[D^-, D^+]$ with C and D in \mathcal{W}_a avoid each other.

In order to prove the proposition, it is enough to show the second part. Now, the interval $[(D^- + C^-) \cap C^+, \ (D^+ + C^-) \cap C^+]$ with $C \in \mathcal{W}_a$ and $D \in \mathcal{W}_b$ lies inside the interval $[C^-, C^+]$, thus it avoids all the intervals of the form $[E^-, E^+]$ with $E \in \mathcal{W}_a$, and also all intervals of the form $[(D^- + C_1) \cap C_1^+, \ (D^+ + C_1) \cap C_1^+]$ with $C \neq C_1$. In the case where $C = C_1$, but $D \neq D_1$, we use again the previous lemma, this time for the interval $[D^-, D^+]$ and $[D^-_1, D^+_1]$ avoid each other.

As a consequence, \mathcal{W}_a induces a filtration $\mathcal{W}_a(M)$ on every module M, given by the set of subspaces $F(M)$, with $F \in \mathcal{W}_a$. We will see later that the intervals $[(D^- + C^-) \cap C^+, \ (D^+ + C^-) \cap C^+]$ and $[C^-, C^+]$ (which will be called the elementary intervals) also cover \mathcal{W}_a. That means that for every M in \mathcal{W}, and every $0 \neq x$ in M, there is one elementary intervall $[F, G]$ such that $x \in G(M)$, but $x \notin F(M)$.

Now we come back to our previous considerations. We have defined the categories $\mathfrak{S}_{C,D}$ (for $C, D, C^{-1}D$ words) and \mathfrak{S}_C (for $C \in \mathcal{W}_a$), and also functors $S_{C,D}$ and S_C, respectively. It remains to define functors $F_{C,D}$ and F_C.

If $C, D, C^{-1}D$ are words, define $F_{C,D} = (C^+ \cap D^+)/[(C^+ \cap D^-) + (C^- \cap D^+)]$. Thus, $F_{C,D}$ does not depend on the order of the pair C, D. On the other hand,
$F_{C,D}$ is isomorphic to the functor $[(D^+ + C^-) \cap C^+]/[(D^- + C^-) \cap C^+]$. If we consider $F_{C,D}$ as a factor in the filtration \mathcal{W}_a, we will tacitly assume that we have replaced $F_{C,D}$ by the functor $[(D^+ + C^-) \cap C^+]/[(D^- + C^-) \cap C^+]$, where C belongs to \mathcal{W}_a (note that always just one of the words C and D belongs to \mathcal{W}_a).

Lemma. Let E be a fixed word. The functors $F_{C,D}$ with $C^{-1}D = E$ are all isomorphic.

Proof. It is enough to show that for $E = C^{-1}lD$, with l a letter and C, D words, the functors $F_{C,lD}$ and $F_{l^{-1}C,D}$ are isomorphic. Also, since $F_{C,lD} = F_{lD,C}$, and so on, we may assume that l is a direct letter, say $l = a$. Now it is easily checked that the multiplication by a defines a vector space isomorphism

$$
\frac{[(a^{-1}D^+ + C^-) \cap C^+]}{[(a^{-1}D^- + C^-) \cap C^+]}(M) \rightarrow \frac{[(D^+ + aC^-) \cap aC^+]}{[(D^- + aC^-) \cap aC^+]}(M),
$$

which is natural in M.

Finally, let C be an element of \mathcal{W}''. If we consider C as a relation on M, we know that C induces on $C''(M)/C(M)$ an automorphism, denoted by $\varphi_{C,M}$. Let $F_C(M) = ((C''/C')(M), \varphi_{C,M})$, so this is really an object in $\mathcal{W}_C = \mathcal{W}_{K[T,T^{-1}]}$.\]

Lemma. Let $C \in \mathcal{W}''$. The functors F_C and $F_{C(i)}$ are isomorphic. Also, $\dim F_C(M) = \dim F_{C^{-1}}(M)$.

Proof. Let $C = l_1 \ldots l_n$ with letters l_i, and let $V_i = (C(i))''/(C(i))'(M)$. Now, if l_i is direct, then it is easily seen that the multiplication by l_i induces an epimorphism $V_{i-1} \rightarrow V_i$. And, if l_i is inverse, then the multiplication by l_i^{-1} induces a monomorphism $V_{i-1} \rightarrow V_i$. Thus, in both cases we have $\dim V_{i-1} \leq \dim V_i$, and

$$\dim V_0 \leq \dim V_1 \ldots \dim V_{n-1} \leq \dim V_0$$

shows that all dimensions are equal, and that in both cases the multiplication by the direct letter l_i or l_i^{-1}, respectively, is an isomorphism. Therefore, the vector-spaces V_i and the corresponding maps satisfy the schema

$$
V_0 \xrightarrow{l_1} V_1 \leftrightarrow V_2 \xleftarrow{l_2} \ldots \xleftarrow{l_{n-1}} V_{n-1}
$$

and the map $\varphi_{C,M}$ is given by $l_1 \ldots l_n$, that is, by going once around the circle, counterclockwise. Note, that the maps $\varphi_{C(i),M}$ are conjugate to $\varphi_{C,M}$.

The last assertion of the lemma is again a statement about the regular part of a relation.

4. The Modules of the First Kind

The first lemma deals both with the modules of the first and of the second kind.

Let M be a module of the form $M(C)$ or $M(C, \varphi)$ defined in the first section. Then M has a canonical vector-space decomposition $M = \bigoplus V_i$ with $V_i = Kz_i$ in the case $M = M(C)$. The elements of M which belong to one of the V_i's are called
homogeneous. Note that both a and b map homogeneous elements in homogeneous elements. A subspace U of M is said to be homogeneous, provided U can be generated by homogeneous elements.

Lemma. If U is a homogeneous subspace of M, and D is a word, then DU is again a homogeneous subspace.

Proof. It is enough to show it for a letter $D = l$. If U is homogeneous, then $U = \Sigma U_i$, with $U_i = U \cap V_i$. Therefore, we may assume that U is contained in one of the V_i. If l is direct, say $l = a$, then $aU \subseteq aV_i$, and aV_i is either zero or is just one of the V_i's. Thus, aU contains only homogeneous elements in this case. If l is inverse, say $l = a^{-1}$, then either there is some V_j such that a maps V_j onto V_i. Then take a subspace U' of V_j with $aU' = U$, and it follows that $a^{-1}U = U' + a^{-1}0$. Or else $aM \cap V_i = 0$, and then $a^{-1}U = a^{-1}0$. Since obviously $a^{-1}0$ is a homogeneous subspace, it follows in both cases that $a^{-1}U$ is homogeneous.

Lemma. Let C, D be words, such that also $C^{-1}D$ is a word. Let C be of length i. Then K_{zi} embeds naturally into $F_{E, D}(M(C^{-1}D))$.

Proof. Let $M = M(C^{-1}D)$, and $K_i = K_{zi}$. Let d be the direct letter with D a word.

First, we will show that $K_i \cap D^{-}(M) = 0$. This will be done by induction on the length j of D. If $j = 0$, then $D = 1_d$, thus $D^{-}(M) = dM$, and obviously, K_i is not contained in dM. Now let l be a letter and E a word with $D = lE$. The induction hypothesis implies $K_{i+1} \cap E^{-}(M) = 0$. First, consider the case where l is direct, say $D = aE$, thus $K_i = aK_{i+1}$. Assume $K_i \subseteq D^{-}(M) = aEdM$, thus $K_{i+1} \subseteq EdM + a^{-1}0$. Since EdM and $a^{-1}0$ both are homogeneous, either $K_{i+1} \subseteq a^{-1}0$, which is nonsense, or else $K_{i+1} \subseteq EdM$, which contradicts the induction hypothesis.

Next, consider the case where l is inverse, say $D = a^{-1}E$, thus $K_{i+1} = aK_i$. If $K_i \subseteq D^{-}(M) = a^{-1}EdM$, then $K_{i+1} = aK_i \subseteq EdM$, again a contradiction to the induction hypothesis.

Since $D^{-}(M)$ is homogeneous, it follows that $D^{-}(M)$ is contained in $\bigoplus_{k+i} K_k$.

Similarly, also $K_i \cap C^{-}(M) = 0$, and therefore also $C^{-}(M)$ is contained in $\bigoplus_{k+i} K_k$.

As a consequence, $K_i \cap [(C^+ \cap D^{-}) + (C^{-} \cap D^{+})](M) = 0$. On the other hand, it is obvious that K_i is contained in $(C^+ \cap D^{+})(M)$, and both assertions together define the embedding of K_i into

$$F_{C, D}(M) = (C^+ \cap D^{+})(M)/[(C^+ \cap D^{-}) + (C^{-} \cap D^{+})](M).$$

Corollary. Let $M = M(E)$ for some word E. If C, D, and $C^{-1}D$ are words, then the functor $F_{C, D}$ takes on M the following value

a) $F_{C, D}(M) = K_{zi}$, if $C^{-1}D = E$ and the length of C is i.

b) $F_{C, D}(M) = 0$, if both $C^{-1}D = E$ and $D^{-1}C = E$.

For C in \mathcal{W}^-, we have

c) $F_{C}(M) = 0$.

Proof. The vector spaces $F_{C, D}(M)$ and $F_{C}(M)$ may be considered as factors in the filtration $\mathcal{W}_a(M)$. Namely, for C in \mathcal{W}^- we may assume that C belongs to \mathcal{W}_a, since $F_{C}(M)$ and $F_{C^{-1}}(M)$ have the same dimension.
Let E be of length n, thus M is of dimension $n + 1$. Also, there are $n + 1$ pairs (C, D) with $E = C^{-1}D$. By the previous lemma, the factors $F_{C,D}(M)$ with $C^{-1}D = E$ are non-zero, thus they are just one-dimensional, and all the other factors of the filtration $\mathcal{F}_n(M)$ have to be zero.

Proposition. For every module M in \mathcal{M}, there is an R-linear mapping
\[\gamma_{C,D,M} : S_{C,D}(M) \rightarrow M \]
such that $F_{C,D}(\gamma_{C,D,M})$ is an isomorphism.

Proof. Given $x \in (C^+ \cap D^+)(M)$, there is an R-linear mapping $\gamma : M(C^{-1}D) \rightarrow M$, such that $\gamma(z_i) = x$, where i is the length of C. Let U be a complement of $[(C^+ \cap D^-) ^{\perp} + (C^- \cap D^+)](M)$ in $(C^+ \cap D^+)(M)$, and let m be the dimension of U. Note that $U = F_{C,D}(M)$, and that $S_{C,D}(M) = \bigoplus_m M(C^{-1}D)$. Using a basis of U, we get an R-linear mapping $\bigoplus_m M(C^{-1}D) \rightarrow M$ such that $\bigoplus_m Kz_i$ is mapped onto U.

5. The Modules of the Second Kind

Given a word $C = l_1 \ldots l_n$ in \mathcal{W}, there are defined the cyclic permuted words $C_{(0)} = C$, $C_{(1)} = l_2 \ldots l_n l_1$, ..., $C_{(n-1)} = l_n l_1 \ldots l_{n-1}$. The elements $C_{(i)}$ and $C_{(i)}^{-1}$ with $0 \leq i \leq n - 1$ form an equivalence class with respect to q'.

Lemma. The words $C_{(0)}, \ldots, C_{(n-1)}, C_{(0)}^{-1}, \ldots, C_{(n-1)}^{-1}$ are pairwise different.

Proof. If $C = C_{(i)}$ coincides with some $C_{(i)}, i \neq 0$, then C is a non-trivial power of some shorter word in \mathcal{W}, impossible. So assume $C = C_{(i)}^{-1}$ for some i. If $C = l_1 \ldots l_n$, then $C_{(i)}^{-1} = l_1^{-1} \ldots l_{i-1}^{-1} l_i^{-1} \ldots l_n^{-1}$. Since $l_i^{-1} = l_1$, either both elements l_i and l_1 are of the form a^* or both are of the form b^*. Thus i is odd, say $i = 2j + 1$. But the $(j + 1)$-th letter of $C_{(i)}^{-1}$ is l_{j+1}^{-1}, thus $l_{j+1}^{-1} = l_j^{-1}$, impossible.

Recall that we have introduced an ordering on \mathcal{W}. In particular, for two words $C, \ D$ of the same length, we have $C < D$ if $C = C_{i} d E_1$ and $D = C_{j} d^{-1} E_1$ for some direct letter d and words C_1, E_1, E_2. Now, the word C in \mathcal{W} will be called minimal provided it belongs to \mathcal{W}_a and we have $C < C_{(i)}$ and $C < C_{(j)}^{-1}$ for all $i \neq 0, j$ such that $C_{(i)}$ and $C_{(j)}^{-1}$ belong to \mathcal{W}_a. By the previous lemma, every equivalence class in \mathcal{W} with respect to q' contains a (uniquely determined) minimal element.

Lemma. Let C be a minimal element in \mathcal{W}, and let φ be an automorphism of some vector space V. Let $M = M(C, \varphi)$. Then $C_{0,M} = 0_M$.

Proof. By definition, $M = \bigoplus_{i=0}^{n-1} V_i$ with $V_i = V$. Let $V_j = V_i$ for $i \equiv j(n)$. Let $C = l_1 \ldots l_n$. If $l_i = a^*$, then the sequence $i, i-1, i-2, \ldots$ is called the a-neighbour sequence of i, and $i-1, i+1, \ldots$ is called the a-neighbour sequence of $i-1$. In this way, we define for every i its a-neighbour sequence. (It corresponds to a walk around the schema, starting at the point i and with direction a^*)

First we show the following. If $D = e_1 \ldots e_m$ is in \mathcal{W}_a, $i_0 = i, i_1, i_2, \ldots$ is the a-neighbour sequence of i, and if $D(x) = 0$ for some $x \in V_i$, then there are elements $x_{i_0} \in V_{i_0}$, such that $x_{i_j} = x, x_{i_0} = 0$, and $x_{i_0} \in e_k x_{i_0}$. The proof follows by induction on m. Namely, if $m = 1$, then there has nothing to be shown. If $m > 1$, then let
$E = e_2 \ldots e_m$, and choose an element y such that $x \in d_1 y$ and $y \in E_0 \mathbf{M}$. If $e_1 = a^{-1}$, then $y = ax$ belongs to V_i, so take $x_{i-1} = y$. If $e_1 = a$, decompose $y = \sum_{j=0}^{n-1} y_j$ into its homogeneous components. Thus, $x = ay = \sum ay_j$ implies $x = ay_i$. On the other hand, with y also y_i belongs to $E_0 \mathbf{M}$, since $E_0 \mathbf{M}$ is homogeneous. So, take in this case $x_i = y_i$. Now we can apply induction on the word E (which belong to \mathcal{W}_a) and the b-neighbor sequence i_1, i_2, \ldots of i_1.

We know that $C_0 \mathbf{M}$ is homogeneous. Thus, let $x \in C_0 \mathbf{M} \cap V_i$ for some i. First, consider the case $i = 0$. Let $i_0 = i, i_1, i_2, \ldots$ be the a-neighbor sequence for i. Let $E = e_1 \ldots e_k$ be equal either to $C_{(i)}$ or to $C_{(i)}^{(1)}$ whatever word belongs to \mathcal{W}_a. Note that $e_k : V_{i, k-1} \to V_{i, k}$ is an isomorphism, for all k. Now compare E with C, say let $e_1 = l_1, \ldots, e_{j-1} = l_{j-1}$, but $e_j \neq l_j$. Since $C \subset E$, this implies that l_j is direct, and $e_j = l_j^{(1)}$. Note that therefore $V_{i, j} = l_{j} V_{i, j-1}$. Now by the first part of the proof, there is a sequence of elements $x_k \in V_{i, k}$ such that $x_0 = x$, and $x_{k-1} = l_k x_k$ (we apply this part for $D = C$). But then $x_{j-1} = l_j x_j$, and $x_j \in V_{i, j} = l_j V_{i, j-1}$ together show that $x_{j-1} \in l_{j}^{(1)} \mathbf{M} = 0$. But this then implies that all the elements x_k, with $0 \leq k \leq j - 1$, satisfy $x_k = 0$.

The case $i = 0$ is even easier. This time, the a-neighbor sequence is just $0, 1, 2, \ldots$, and because of $x \in C_0 \mathbf{M}$, the first part of the proof gives us again a sequence of elements $x_k \in V_k$, with $x_0 = x$, $x_{k-1} = l_k x_k$, and $x_n = 0$. But since the maps $l_k : V_{k-1} \to V_k$ are all isomorphisms, it follows that all the elements $x_k = 0$.

Corollary. Let $M = M(C, \varphi)$ for some C in \mathcal{W} and some automorphism φ of a vector space V. If $D \subset \mathcal{W}$, then the functor F_D takes M on the following value

a) $F_D(M) = (V, \varphi)$, if $D = C_{(i)}$ for some i,

b) $F_D(M) = 0$, if D is neither of the form $C_{(i), 1}$ nor of the form $C_{(i)}^{(-1)}$ for some i.

If D, E, and $D^{-1} E$ are words, then

c) $F_D(E) = 0$.

Proof. Assume the length of C is $2n$ and that C is minimal. Obviously, $V_0 \subseteq C''(M)$. Since $C_0 \mathbf{M} = 0$, it follows that $C'(M) = 0$, thus, V_0 can be embedded into $(C'/C')(M)$. The functors $F_{C_{(2i)1}}$ and $F_{C_{(2i)}}(0 \leq i \leq n - 1)$ define pairwise different factors in the filtration \mathcal{W}_a, and all are of equal dimension, thus it follows that $V_0 = (C'/C')(M)$. Of course, the induced automorphism is just φ. Also it can easily be seen that V_i is a complement to $(C_{(i)})'(M)$ in $(C_{(i)})''(M)$. The other factors in the filtration $\mathcal{W}_a(M)$ have to be zero, this then proves (b) and (c).

Proposition. For every module M in \mathcal{M}, there is an R-linear mapping $\gamma_{C, M} : S_C F_C(M) \to M$ such that $F_C(\gamma_{C, M})$ is an isomorphism. Here, C is a word in \mathcal{W}.

Proof. Consider C as a relation on M. We know that there is a subspace U such that $C'(M) \oplus U = C''(M)$, and, moreover, C induces an automorphism $\varphi_{C, M}$ on U. Thus, if x_1, \ldots, x_m is a basis of U, then $C x_i \cap U$ contains precisely one element, namely $\varphi_{C, M}(x_i)$. Let $C = l_1 \ldots l_n$ and choose elements $x_i^{(k)} \in M$ such that $x_i^{(n)} = x_i, x_i^{(k-1)} \in l_k(x_i^{(k)})$ and $x_i^{(0)} = \varphi_{C, M}(x_i)$. This then defines a mapping from $S_C F_C(M)$ into M. Namely, $F_C(M)$ can be identified with $(U, \varphi_{C, M})$ and we map U_0 identically onto U, and we map the base elements x_i of $U_k = U$ onto $x_i^{(k)}$. It follows, that this map is R-linear and that it goes, under F_C, onto an isomorphism.
6. The Elementary Intervals Cover \tilde{W}_a

In this section, we will also consider infinite words in our letters a, a^{-1}, b, b^{-1}. An infinite word $l_1l_2 \ldots$ is given by a sequence l_1, l_2, \ldots of letters with the same restriction as for finite words, namely that $l_i=a$ implies $l_{i+1}=b$, and that $l_i=b$ implies $l_{i+1}=a$. If $A=l_1l_2 \ldots$ is an infinite word, denote by $A_{[a]}=l_1l_2 \ldots l_n$ its finite part of length n. For example, if C belongs to \mathcal{W}^∞ and has length m, we may form the infinite word C^∞ with $(C^\infty)_{[km]}=C^k$. Infinite words of this form will be called periodic. As in the case of a periodic word, we consider for arbitrary infinite words A the following inclusions

$$A_{[1]}0_M \subseteq A_{[2]}0_M \subseteq \cdots \subseteq A_{[n]}0_M \subseteq \cdots \subseteq A_{[n]}M \subseteq \cdots \subseteq A_{[1]}M,$$

so again we may define functors A' and A'' from \mathfrak{M} into \mathfrak{M}

$$A'(M) = \bigcup_n A_{[n]}0_M \subseteq \bigcap_n A_{[n]}M = A''(M).$$

Thus, for $C \in \mathcal{W}^\infty$, we have $C'=(C^\infty)'$ and $C''=(C^\infty)'$. Denote by \mathcal{W}_a^∞ the set of infinite words with first letter a^*.

Lemma. Let M be a module, and $0 \neq x \in M$. Then there is either some $C \in \mathcal{W}_a$ with $x \in C^+(M)$ and $x \notin C^-(M)$, or there is some infinite word $A \in \mathcal{W}_a^\infty$ such that $x \in A''(M)$ and $x \notin A'(M)$.

Proof. Recall again that for two words C, D of \mathcal{W}_a of equal length, we write $C \prec D$ provided there is a direct letter d and words C_1, E_1, E_2 with $C=C_1dE_1$ and $D=C_1dE_2$. Let $A_{[n]}$ be the smallest word with respect to this ordering of length n such that $x \in A_{[n]}M$. Let d be direct with $A_{[n]}d$ a word. If $x \in A_{[n]}dM$, then let $A_{[n+1]}=A_{[n]}d$, otherwise, let $A_{[n+1]}=A_{[n]}d^{-1}$. It is easy to see that $A_{[n+1]}$ is the smallest word of length $n+1$ with $x \in A_{[n+1]}M$. In this way, we construct an infinite word A in \mathcal{W}_a^∞, and we have $x \in A''(M)$. Now, assume x lies also in $A'(M)=\bigcup A_{[n]}0_M$. Let n be minimal with $x \in A_{[n]}0_M$, and let $A_{[n+1]}=A_{[n]}I_{n+1}$. Obviously, I_{n+1} has to be inverse, since otherwise also $x \in A_{[n]}0_M$. Thus, the direct letter d with $A_{[n]}d$ a word satisfies $x \in A_{[n]}d^{-1}0_M=A_{[n]}^+(M)$ since $A_{[n]}=A_{[n]}d^{-1}$,

It remains to be shown that only the intervals $[A', A'']$ with A a periodic word, are of importance.

Lemma. Let A be an infinite word, and $A' \neq A''$. Then A is periodic.

Proof. Note that we can order the set \mathcal{W}^∞ by the rule $A \prec B$ provided there is a direct letter d such that $A_{[n]}=B_{[n]}$, $A_{[n+1]}=A_{[n]}d$ and $B_{[n+1]}=B_{[n]}d^{-1}$. (This is just the extension of the ordering of \mathcal{W} to infinite words.) Then \mathcal{W}^∞ is the disjoint union of two chains, namely of \mathcal{W}_a^∞ and \mathcal{W}_b^∞. Also, it is easy to see that $A \prec B$ implies that $A' \subseteq A'' \subseteq B' \subseteq B''$ as functors. Thus, the intervals $[A', A'']$ with $A \in \mathcal{W}_a^\infty$ all avoid each other, and similarly, for \mathcal{W}_b^∞.

Now, let A be an infinite word, and M a module with $A'(M) \neq A''(M)$. Let \mathcal{F} be the set of all infinite words B with $B'(M) \neq B''(M)$ for this particular module M. Now M is finite dimensional and the factors $B''(M)/B'(M)$ belong to two filtrations of M, thus the number of factors $B''(M)/B'(M) \neq 0$ is finite. Therefore, also \mathcal{F} is a finite set.
Next, if we write $A = A_{(n)} A^{(m)}$ with an infinite word $A^{(n)}$, then also $A^{(n)}$ belongs to \mathcal{F}. Since \mathcal{F} is finite, we conclude that $A^{(n)} = A^{(m)}$ for some $n + m$, and therefore $A = A_{(n)} C^{(\infty)}$ with C a finite word, $C \in \mathcal{W}^{(n)}$. Let l be the last letter of C. Since C is of even length, the last letter of $A_{(n)}$ is either l or l^{-1}. Now, if we assume that n is minimal, then either $n = 0$ and A is periodic, or otherwise the last letter of $A_{(n)}$ has to be l^{-1}. We want to show that the latter leads to a contradiction. With $C^{(\infty)}$ also $l^{-1} C^{(\infty)}$ belongs to \mathcal{F}, so assume, both $l^{-1} C^{(\infty)}$ and $l^{-1} C^{(\infty)}$ belong to \mathcal{F}. On the one hand, we have the inequality, for all k,

$$\dim C^{(k)} M / C^{(0)} M \geq \dim l^{-1} C^{(k)} M / l^{-1} C^{(0)} M ,$$

since l is a letter, and both a and b act on M with $a^2 = b^2 = 0$. On the other hand, $l^{-1} C^{(\infty)} = C^{(n-1)}$, where $C^{(n-1)}$ is the $(n-1)$-th cyclic permuted word to C. Thus, for large k,

$$\dim C^{(k)} M / C^{(0)} M = \dim l^{-1} C^{(k)} M / l^{-1} C^{(0)} M ,$$

and therefore, for large k, $l^{-1} C^{(k)} M = l^{-1} C^{(0)} M$. This shows that $l^{-1} C^{(\infty)}$ does not belong to \mathcal{F}.

Proposition. The intervals $[(D^{-} + C^{-}) \cap C^{+}, (D^{+} + C^{-}) \cap C^{+}]$ with $C \in \mathcal{W}^{(a)}$ and $D \in \mathcal{W}^{(a)}$, and the intervals $[C^{-}, C^{+}]$ with $C \in \mathcal{W}^{(b)}$, together cover $\mathcal{W}^{(a)}$.

Proof. We only have to show that the interval $[C^{-}, C^{+}]$ with $C \in \mathcal{W}^{(a)}$ is covered by the intervals of the first kind. Since $\mathcal{W}^{(b)}$ is covered by the intervals $[D^{-}, D^{+}]$ with $D \in \mathcal{W}^{(a)}$ and $[E^{-}, E^{+}]$ with $E \in \mathcal{W}^{(a)}$, we only have to show that

$$(E^{+} + C^{-}) \cap C^{+} = (E^{+} + C^{-}) \cap C^{+} ,$$

for $C \in \mathcal{W}^{(a)}$ and $E \in \mathcal{W}^{(a)}$. Using again the fact that the regular part of a relation splits off, we know that there is a subspace U with $(E^{+} + (E^{-})^{(a)}) \mathcal{W}^{(a)} = (E^{+} + (E^{-})^{(a)}) \mathcal{W}^{(a)}$. Now E^{-1} belongs to $\mathcal{W}^{(a)}$, so we know that either $C^{+} \subseteq (E^{-1})^{(a)}$ or that $(E^{-1})^{(a)} \subseteq C^{-}$. In both cases, the equality follows immediately.

7. Completion of the Proof

We have used throughout the previous sections as index set the disjoint union of $\mathcal{W}^{(a)}$ and the set of all pairs C, D such that $C, D, C^{-1} D$ are words. It remains to select an appropriate subset I such that the functors $S_{i}, F_{i} (i \in I)$ then satisfy the conditions of the first lemma in Section 3.

Given a word E, then the functors $F_{i, E}$ with $C^{-1} D = E$ or with $D^{-1} C = E$ are all equivalent, thus we will use just one of those. That is, for every equivalence class E, E^{-1} with respect to g, we select one of the words, say $E = 1_{d} E$, and some decomposition, say $1_{d} E$. To be more precise, call E principal, provided either E has even length and belongs to $\mathcal{W}^{(a)}$, or E has odd length, say $E = E_{1} l E_{2}$, with words E_{1} and E_{2} of equal length, and a letter l, and its middle letter l is direct. Let I be the disjoint union of the principal words in $\mathcal{W}^{(a)}$, and the minimal words in $\mathcal{W}^{(a)}$.

If E is a principal word, then let the corresponding functor F_{i} be given by $F_{1_{d} E}$, where d is the direct letter such that $d E$ is not a word. Now, it follows easily, that all conditions of the first lemma in Section 3 are satisfied.
8. Appendix. Calculation of Ω and Ω^2

Let S be a quasi-Frobenius ring. If S_M is indecomposable and not projective, choose a projective cover $\varepsilon: S_P \rightarrow S_M$, and let $\Omega = \ker \varepsilon$. In this way, we get a bijective mapping Ω from the set of isomorphism classes of non-projective indecomposable S-modules into itself. It is well known that the mapping Ω^2 is of particular interest.

Fix a natural number $q \geq 1$. Let $S = S(q) = K \langle X, Y \rangle/(X^q, Y^q, (XY)^p - (YX)^q)$, and denote the canonical images of X and Y in S by a and b, respectively. Then S is a quasi-Frobenius ring, and the category $s\mathcal{W}$ is a full exact subcategory of \mathcal{W}. Let $\mathcal{W}^r(q)$ be the set of all words in \mathcal{W} which don’t contain $(ab)^q$, $(ba)^q$ or their inverses; similarly, let $\mathcal{W}^{-r}(q)$ be the set of all words C in \mathcal{W}^{-r} such that no power C^n of C contains any of the words $(ab)^q$, $(ba)^q$ or their inverses. Obviously, the indecomposable S-modules are $S = M((ab)^q(ab)^{-q}, \text{id})$, where id is the identity automorphism on the vector space K, and the modules of the first kind $M(C)$ with $C \in \mathcal{W}^r(q)$, and the modules of the second kind $M(C, \varphi)$ with $C \in \mathcal{W}^{-r}(q)$ and φ an indecomposable automorphism of some vector space.

Define on $\mathcal{W}^r(q)$ a set-theoretical mapping ϕ as follows. First, denote $A = (ab)^{q-1} a$, $B = (ba)^{q-1} b$. For the words A, B, AB^{-1} let

$$\phi(A) = A, \quad \phi(B) = B, \quad \phi(AB^{-1}) = A^{-1} B.$$

Since we want to have that ϕ commutes with forming inverses, this also defines the value of ϕ on A^{-1}, B^{-1} and BA^{-1}. The other words $C \in \mathcal{W}^r(q)$ will be changed by ϕ in two ways, namely by a change on the left side, and one on the right side: If C starts with $A^{-1} B$, then we cancel this part, otherwise, we multiply from the left either by $A^{-1} B$ or $B^{-1} A$, whatever gives a word. Similarly, if C ends in $a^{-1} B$ or $b^{-1} A$, this part of the word is cancelled under ϕ, and otherwise $a^{-1} B$ or $b^{-1} A$ is added on the right. For example, consider the word $C = Ab^{-1} A^{-1} b^{-1} a^{-1} B$. If $q > 1$, then $\phi(C) = A^{-1} b^{-1} a^{-1} A B^{-1} a^{-1}$, whereas for $q = 1$, $\phi(C) = A^{-1} a^{-1}$.

Since ϕ commutes with forming inverses, it induces a mapping on $\mathcal{W}^r(q)$. It is easy to determine the orbits of $\{\phi^z; z \in \mathbb{Z}\}$ on $\mathcal{W}^r(q)$. Namely, the fixpoints are just the elements A, and B. All the other orbits have infinite length, and there are infinitely many such orbits.

Theorem. Let $q \geq 1$ be a natural number. Then

$$\Omega^2 M(C) = M(\phi(C)) \quad \text{for} \quad C \in \mathcal{W}^r(q),$$

$$\Omega^2 M(C, \varphi) = M(C, \varphi) \quad \text{for} \quad C \in \mathcal{W}^{-r}(q), \quad \varphi \in k_{\mathcal{T}, \mathcal{T}^{-1}} \mathcal{W}.$$

Proof. Given a word $C \in \mathcal{W}$, its generation form is given by $C = C_1 C_2^{-1} \cdot C_3 C_4^{-1} \cdot \ldots \cdot C_{2g-1} C_{2g}^{-1}$, where all letters in C_i are direct $(1 \leq i \leq 2g)$, and such that $|C_i| \geq 1$ for $1 < i < 2g$ (note that C_1 and C_{2g} may be equal to 1_a or 1_b). In this case, g is called the generating number of C.

If $C = C_1 C_2^{-1} \ldots C_{2g}^{-1}$ is in generation form, then we denote by $K(C)$ the word $K(C) = D_1^{-1} D_2 D_3^{-1} \ldots D_{2g}$, where again all letters in the D_i's are direct, and such that, moreover, $D_i C_i$ is a word and of length $2g$. It is easy to see that $K(C)$ exists and
is uniquely determined. Namely, given \(C \), define the words \(D_i \) consisting of direct letters by the property that \(D_iC_1 \) is a word of length \(2q \). Then \(D_i^{-1} \) can be multiplied from the right by \(D_2 \), since \(C_1C_2^{-1}, C_1D_1 \) and \(C_2D_2 \) are words. Similarly, \(D_2D_3^{-1} \) is a word, and so on, therefore, \(K(C) \) exists.

Lemma. Let \(C \) be a word in \(\mathcal{W}(q) \), and let \(c, d \) be the direct letters, such that \(cCd^{-1} \) is in \(\mathcal{W} \). Then \(\Omega M(C) = M(K(cCd^{-1})) \).

Proof. Let \(C = C_1C_2^{-1}...C_{2g}^{-1} \) be the generation form of \(C \). Consider the free module \(\mathcal{S}_P = \bigoplus_{i=1}^{g} S^{(i)} \), where \(S^{(i)} = sS \) is given by the following diagram:

\[
\begin{array}{cccccc}
K_0^{(i)} & \xleftarrow{a} & K_1^{(i)} & \xrightarrow{b} & K_2^{(i)} & \xleftarrow{a} \cdots & K_{q-1}^{(i)} \\
& & \downarrow{b} & & \downarrow{a} & & \\
& & K_{2q-1}^{(i)} & \xleftarrow{a} & K_{2q-2}^{(i)} & \xrightarrow{b} & \\
\end{array}
\]

with \(K_j^{(i)} = K \) for all \(i, j \). Also, let \(j_i \) be the length of the word \(C_1...C_{2i-1} \) \((i = 1, ..., g) \), thus \(M(C) \) has the form

\[
V_0 \xrightarrow{C_1} \cdots \xrightarrow{C_{j_1}} V_1 \xrightarrow{C_2} \cdots \xrightarrow{C_{j_2}} V_2 \xrightarrow{C_3} \cdots \xrightarrow{C_{j_g}} V_g \xrightarrow{C_2g} V_n.
\]

Define a map \(\mathcal{S}_P \to M(C) \) by mapping \(K_{q-1}^{(i)} = K \) identically onto \(V_{j_i} = K \) for \(1 \leq i \leq g \). It is easy to see that the kernel is just \(M(K(cCd^{-1})) \).

Corollary. For \(C \) in \(\mathcal{W}(q) \), \(\Omega^2 M(C) = M(\phi(C)) \).

Proof. We may assume that the first letter of \(C \) is \(a^k \). If \(C = A \), then \(K(bAb^{-1}) = (1_b)^{-1} A = A \), thus \(\Omega M(A) = M(A) \). If \(C = AB^{-1} \), then \(K(bAB^{-1}a^{-1}) = (1_b)^{-1} 1_a = 1_a \), and \(K(b \cdot 1_a \cdot a^{-1}) = A^{-1} B \), thus \(\Omega^2 M(AB^{-1}) = M(A^{-1} B) \). So assume \(C \neq A, AB^{-1} \).

Let \(C_1C_2^{-1}...C_{2g}^{-1} \) be the generation form of \(C \), then \((bC_1)C_2^{-1}...C_{2g-1}(dC_{2g})^{-1} \) is the generation form of \(bCd^{-1} \). Let \(K(bCd^{-1}) = D_1^{-1}D_2...D_{2g}^{-1} \). If \(|C_1| = 2q - 1 \), then \(C \) starts with \(Ab^{-1} \). In this case, let \(C_2 = E_2b \). Note that \(|D_1| = 0 \), thus \(D_1 = D_2D_3^{-1}...D_{2g}^{-1} \). Since the last letter of \(C_2 \) is \(b \), the first letter of \(D_2C_2 \) is \(a \), thus we have to consider \(K(bDe^{-1}) \), for the suitable direct letter \(e \). Now \((bD_2)D_3...D_{2g}^{-1} \) is the left hand side of the generation form of \(bDe^{-1} \). Since \(D_2C_2 = D_2E_2b \) is a word and of length \(2q \), also \(E_2(bD_2) = (E_2b)D_2 \) is a word and of length \(2q \). Thus, the left hand side of \(K(bDe^{-1}) \) is just \(E_2^{-1}C_3... \), and by definition, this is the left hand side of \(\phi(C) \).

Next, let \(|C_1| < 2q - 1 \). Then \(|D_1| \neq 0 \). Since \(D_1bC_1 \) is a word, \(D_1^{-1} \) starts with \(a^{-1} \), and therefore we have to consider \(K(bDe^{-1}) \), for some direct letter \(e \). Note that now \(b \cdot D_1^{-1}D_2... \) is the left hand side of the generation form of \(bDe^{-1} \). Therefore, \(K(bDe^{-1}) = E_0^{-1}E_1E_2^{-1}... \) where \(E_0b, E_1D_1, E_2D_2, ... \) are words of length \(2q \) and consist only of direct letters. As a consequence, \(E_0 = A, E_1 = bC_1, E_2 = C_2, \) and so on. This shows, that \(K(bDe^{-1}) \) is equal, on the left side, to \(A^{-1}bC_1C_2^{-1}... \).
We have shown that $\Omega^2 M(C) = M(E)$, where E coincides, on the left, with $\phi(C)$. By symmetry, the same is true on the right.

Lemma. Let $C \in W^{-}(q)$ with first letter direct, and last letter inverse. Let g be the generating number of C. Then for any $\phi \in K(T, T^{-1}) \mathfrak{M}$, $\Omega M(C, \phi) = M(K(C), (-1)^g \phi^{-1})$.

Proof. Let ϕ be automorphism of the vector space V, and $\dim_k V = m$. Again, we have to construct a free module $P = \bigoplus_{i=1}^{g} P^{(i)}$, with $P^{(i)} = S^n$ free of rank n, given in a similar way as in the previous lemma, namely

$$
\begin{array}{cccccc}
W_0^{(i)} & \xleftarrow{a} & W_1^{(i)} & \xleftarrow{b} & W_2^{(i)} & \xleftarrow{a} \ldots \xleftarrow{b} & W_{q-1}^{(i)} \\
& \searrow & \swarrow & \searrow & \swarrow & & \\
& b & a & & & & \\
& W_{2^{q-2}}^{(i)} & \xleftarrow{a} & W_{2^{q-2}}^{(i)} & \xleftarrow{b} & \ldots
\end{array}
$$

where all $W_i^{(0)} = V$, and all maps are given by the identity map on V.

Let $C = C_1 C_2^{-1} \ldots C_{2g}^{-1}$ be the generation form of C. Let j_i be the length of the word $C_1 \ldots C_{2i-1}$, and k_i the length of $C_1 \ldots C_{2i}$. Then, $M(C, \phi)$ has the form

$$
\begin{array}{cccccccc}
V_0 & \xleftarrow{C_i} & V_1 & \xrightarrow{C_i} & V_2 & \xleftarrow{C_i} & \cdots & \xleftarrow{C_i} & V_{k_i} & \xrightarrow{C_i} & \cdots & \xrightarrow{C_i} & V_{j_i} & \xleftarrow{C_i} & \cdots & \xrightarrow{C_i} & V_g
\end{array}
$$

where all arrows, except the first one $V_0 \xleftarrow{C_i} V_1$, give the identity map on V, whereas $V_0 \xleftarrow{C_i} V_1$ is given by ϕ.

Define a mapping $M(C, \phi)$ by the following condition: For odd i, map $W_{q-1}^{(i)} = V$ by the identity map id onto V_{j_i}, whereas, for even i, map $W_{q-1}^{(i)}$ onto V_{j_i} by $-\text{id}$. The kernel of this map can be constructed in the following way. Consider the modules $M(D_{1}^{-1} D_2)$, $M(D_{3}^{-1} D_4)$, ..., $M(D_{2g-1}^{-1} D_{2g})$, where $K(C) = D_{1}^{-1} \ldots D_{2g}$. We want to identify the vectorspaces belonging to consecutive end points, in order to get a module of the form $M(K(C), \psi)$ for some ψ. Now, for every i with $1 \leq i < g$, there are given two indices u, v with $1 \leq u, v \leq 2g - 1$ and maps $W_u^{(i)} \rightarrow V_{k_i}$ and $W_v^{(i+1)} \rightarrow V_{k_i}$ which are restrictions of ψ. One of these maps is id, the other one is $-\text{id}$, and the kernel of both together identifies two of those vectorspaces. In order to identify the first vectorspace of $M(D_{1}^{-1} D_2)$ and the last of $M(D_{2g-1}^{-1} D_{2g})$, we use the two maps $W_u^{(g)} \rightarrow V_0$ and $W_v^{(1)} \rightarrow V_0$ which are restrictions of ψ, again for some u, v. The first of these maps is of the form $(-\text{id})^{-1}$, the second is of the form ϕ. Thus, the kernel of the combined map $W_u^{(g)} \oplus W_v^{(1)} \rightarrow V_0$ is just the graph of the map $(-1)^g \phi$. Thus, we have constructed to the word $K(C)$ a sequence of vectorspaces and maps which give a module $M(K(C), \psi)$. The only map which is not the identity, is $(-1)^g \phi$ and is induced by the first letter of D. Since this is an inverse letter, we see that $\psi = (-1)^g \phi^{-1}$.

This concludes the proof of the lemma, and this obviously implies $\Omega^2 M(C, \phi) = M(C, \phi)$.

Dihedral 2-Groups
Reference

Claus Michael Ringel
Sonderforschungsbereich "Theoretische Mathematik"
Universität
D-5300 Bonn
Beringstraße 1
Federal Republic of Germany

(Received June 18, 1974)