QF – 1 RINGS OF GLOBAL DIMENSION ≤ 2

CLAUS MICHAEL RINGEL

R. M. Thrall [10] introduced QF – 1, QF – 2 and QF – 3 rings as generalizations of quasi-Frobenius rings. (For definitions, see section 1. It should be noted that all rings considered are assumed to be left and right artinian.) He proved that QF – 2 rings are QF – 3 and asked whether all QF – 1 rings are QF – 2, or, at least, QF – 3. In [9] we have shown that QF – 1 rings are very similar to QF – 3 rings. On the other hand, K. Morita [6] gave two examples of QF – 1 rings, one of them not QF – 2 and therefore not QF – 3, the other one QF – 3, but not QF – 2. The global dimension of the latter ring is 2, and the following theorem shows that under this assumption a QF – 1 ring must always be QF – 3.

THEOREM. A QF – 1 ring of left global dimension ≤ 2 is a QF – 3 ring.

In order to classify finite dimensional algebras, T. Nakayama [8] defined the dominant dimension dom dim R of a ring R. Since dom dim R ≥ 1 if and only if R is a QF – 3 ring, and, in this case, dom dim R ≥ 2 if and only if the minimal faithful left R-module is balanced, we may reformulate the theorem as follows: a QF – 1 ring R of left global dimension ≤ 2 has dom dim R ≥ 2. It was proved by K. R. Fuller [4] that for a ring R with dom dim R ≥ 2, every faithful module which is either projective or injective has to be balanced. Naturally, the question arises whether it is possible to characterize those rings R of left global dimension ≤ 2 which have dom dim ≥ 2 by the fact that certain faithful R-modules are balanced. This question seems to be interesting in view of the importance of the class of rings of global dimension ≤ 2 and dominant dimension ≥ 2, recently demonstrated by M. Auslander [1].

The proof of the theorem uses besides the socle conditions of [9] a result concerning the right socle of a QF – 1 ring, and the methods to prove this are similar to those developed in [9]. The assumption in the theorem on the global dimension can be replaced by the (weaker) condition that the right socle, considered as a left module, is projective.

1. Preliminaries. Throughout the paper, R denotes a (left and right) artinian ring with unity. By an R-module we understand a unital R-module and the symbols RM and MR will be used to underline the fact that M is a left or a right R-module, respectively.

Received January 10, 1972 and in revised form, March 21, 1972. This research was supported by an NRC grant.
The length of the module M will be denoted by ∂M. For every module M, \(\text{Rad} M \) is the intersection of all maximal submodules. The radical of R is by definition $\text{Rad}_R R$; it will be denoted by W. It is well-known that for an artinian ring, W is nilpotent. The submodule of M generated by all simple submodules, is called the socle, $\text{Soc} M$ of M. Since R is artinian, we have for every left R-module, $\text{Rad} M = WM$ and $\text{Soc} M = \{ m \in M | Wm = 0 \}$. Considering R_R, we get the left socle $L = \text{Soc} R_R$, considering R_R, we get the right socle $J = \text{Soc} R_R$ of R.

If e is an idempotent, Re always will be considered as a left R-module, and the R-homomorphisms $Re \to Re'$ (where e' is another idempotent) will be identified with the elements of eRe'. Also, it should be noted that Re and Re' are isomorphic if there are elements $x \in eRe'$ and $y \in e'Re$ with $exy = e$. The ring R is called a basis ring if for orthogonal idempotents e and e', Re and Re' never are isomorphic. Basis rings can be characterized by the fact that $eR(1 - e) \subseteq W$ for every idempotent e. If R is an arbitrary artinian ring and we write

$$1 = \sum_{i,j} e_{ij}$$

with primitive and orthogonal idempotents e_{ij} such that $Re_{ij} = Re_{k,l}$ if and only if $i = k$, then, for $E = \sum_i e_{ii}$, the ring ERE is a basis ring which is Morita equivalent to R.

The ring R is a $QF - 3$ ring if R has a unique minimal faithful left R-module R_X (that is, R_X is faithful, and is a direct summand of every faithful left R-module). A $QF - 3$ ring also has a unique minimal faithful right R-module. The ring R is $QF - 3$ if and only if for every primitive idempotent e with $Je \neq 0$, the socle Le of Re is simple, and similarly for every primitive idempotent f with $fL \neq 0$, the socle fJ of fR is simple [2, Theorem (3.6)].

Module homomorphisms always act from the opposite side as the operators; in particular, every left R-module R_M defines a \mathcal{C}-module $M_{\mathcal{C}}$, where \mathcal{C} is the centralizer of R_M. The double centralizer \mathcal{D} of R_M is the centralizer of $M_{\mathcal{C}}$, and there is a canonical ring homomorphism $R \to \mathcal{D}$. The module R_M is called balanced if this morphism $R \to \mathcal{D}$ is surjective. If every finitely generated faithful (left or right) R-module is balanced, then R is said to be a $QF - 1$ ring. Until now, no internal characterization of $QF - 1$ rings seems to be known, but in [9] certain necessary socle conditions were proved. For the convenience of the reader and for later reference, we recall these conditions: If R is a $QF - 1$ ring and e and f are primitive idempotents with $f(L \cap J)e \neq 0$, then

1. either $\partial Re = 1$ or $\partial fL R = 1$,
2. we have $\partial Re \times \partial fJ R \leq 2$,
3. $\partial Re = 2$ implies $Je \subseteq Le$, and
4. $\partial fJ R = 2$ implies $fL \subseteq fJ$.

In particular, (2) shows that a $QF - 1$ ring is very similar to a $QF - 3$ ring. If R_M is an indecomposable module of finite length, then the centralizer \mathcal{C}
of \(M \) is a local ring. Consequently, all simple \(\mathcal{C} \)-modules are isomorphic. Moreover, the radical \(\mathcal{W} \) of \(\mathcal{C} \) is nilpotent, thus the radical of \(M_{\mathcal{C}} \) is a proper submodule, and \(\text{Soc} M_{\mathcal{C}} \) is essential in \(M_{\mathcal{C}} \). If \(rM \) and \(rN \) are modules, then elements in the double centralizer of \(r(M \oplus N) \) can be constructed as follows: Let \(\mathcal{C} \) be the centralizer of \(rM \) and let \(M' \) and \(M'' \) be \(\mathcal{C} \)-submodules of \(M_{\mathcal{C}} \) such that the image of every \(R \)-homomorphism \(rN \to rM \) is contained in \(M' \), whereas \(M'' \) is contained in the kernel of every \(R \)-homomorphism \(rM \to rN \). Then, given a \(\mathcal{C} \)-homomorphism \(\psi \) of the form

\[
M_{\mathcal{C}} \xrightarrow{\xi} M/M' \to M'' \xrightarrow{\iota} M_{\mathcal{C}}
\]

(where \(\xi \) is the canonical epimorphism, \(\iota \) the inclusion), the trivial extension

\[
\begin{bmatrix}
\psi & 0 \\
0 & 0
\end{bmatrix}: M \oplus N \to M \oplus N
\]

of \(\psi \) belongs to the double centralizer of \(r(M \oplus N) \).

If, for a module \(M \), there exists an exact sequence of \(R \)-modules

\[
0 \to M \to D_1 \to D_2 \to \ldots \to D_n
\]

with \(D_1 \) both projective and injective, then the dominant dimension \(\text{dom dim} \ M \) of the module \(M \) is \(\geq n \). Now \(\text{dom dim} \ R \geq 1 \) if and only if \(R \) is a \(QF - 3 \) ring [5]. In this case, \(\text{dom dim} \ R \geq 2 \) if and only if the minimal faithful left \(R \)-module is balanced [7]. Since the minimal faithful left \(R \)-module of a \(QF - 3 \) ring is both projective and injective, all faithful left or right modules which are either projective or injective are balanced [4, Theorem 5]. In particular, also the minimal faithful right module is balanced, and \(\text{dom dim} \ R \geq 2 \). So we simply may say that the dominant dimension of \(R \) is \(\geq 2 \).

If there exists a natural number \(m \) such that for every exact sequence of left \(R \)-modules

\[
0 \to K \to P_{m-1} \to \ldots \to P_1 \to P_0 \to M \to 0
\]

with \(P_i \) projective for \(0 \leq i \leq m - 1 \), \(K \) is also projective, then the smallest such \(m \) is called the left global dimension of \(R \). It is easy to see that the left global dimension of \(R \) is \(\leq 2 \) if and only if the kernel of every \(R \)-homomorphism \(\overline{R}F \to \overline{R}F' \), with \(\overline{R}F \) and \(\overline{R}F' \) both free, is projective.

2. The aim of this section is to prove the following general result on \(QF - 1 \) rings.

Proposition. Consider a \(QF - 1 \) ring \(R \) with left socle \(L \) and right socle \(J \). Let \(e \) and \(f \) be primitive idempotents. If \(y \) is an element of \(fJe \) which does not belong to \(L \), and if \(fL \neq 0 \), then \(Ry = Je \).

Proof. Obviously, we may assume that \(R \) is a basis ring, because if the propo-
sition holds for a basis subring of R, it is also true for R. Also, we may assume that $y \in W$, since otherwise the conclusion is trivial.

Let e_1 be a primitive idempotent such that e_1 and $e_2 = e$ are either orthogonal or equal, and which satisfies $f(L \cap J)e_1 \neq 0$. Let x be a non-zero element in $f(L \cap J)e_1$. Since $xR \cap yR = 0$, the left R-module

$$R^M = (Re_1 \oplus Re_2)/R(x, y)$$

is indecomposable [9]. The endomorphisms of R^M are induced by matrices

$$
\begin{bmatrix}
 r_{11} & r_{12} \\
 r_{21} & r_{22}
\end{bmatrix}
$$

with entries $r_{ij} \in e_i Re_j$, for $1 \leq i, j \leq 2$, operating on $Re_1 \oplus Re_2$ from the right. If (r_{ij}) induces an endomorphism of R^M, then r_{21} belongs to the radical W of R. For, consider the image of (x, y) under (r_{ij}). We have

$$(xr_{11} + yr_{21}, xr_{12} + yr_{22}) = (\lambda x, \lambda y)$$

for some $\lambda \in R$. Thus $yr_{21} = \lambda x - xr_{11} \in L$, and, since $y \in L$, we conclude that $r_{21} \in W$.

Also, if (r_{ij}) induces a nilpotent endomorphism of R^M, then $r_{22} \in W$. For, consider the image of $(0, y)$ under (r_{ij}). We have

$$
(0, y) \begin{bmatrix}
 r_{11} & r_{12} \\
 r_{21} & r_{22}
\end{bmatrix} = (yr_{21}, yr_{22}) = (0, yr_{22}),
$$

since $y \in J$ and $r_{21} \in W$. By induction, we get for natural n

$$
(0, y) \begin{bmatrix}
 r_{11} & r_{12} \\
 r_{21} & r_{22}
\end{bmatrix}^n = (0, yr_{22}^n).
$$

Since, by assumption, (r_{ij}) induces a nilpotent endomorphism, there is some n with

$$(0, yr_{22}^n) = (\lambda x, \lambda y),$$

where λ can be chosen in Rf. But $\lambda x = 0$ implies $\lambda \in W$, thus λ is nilpotent. If $\lambda^n = 0$, then $yr_{22}^n = \lambda y$ yields $yr_{22}^{nm} = \lambda^m y = 0$, and consequently, r_{22} cannot be invertible in $e_2 Re_2$.

Let C be the centralizer of R^M. It follows from the considerations above that $(0 \oplus Je_2) + R(x, y)/R(x, y)$ is contained in $\text{Soc } M_C$. For, if W' denotes the radical of C, the elements of W' can be lifted to matrices (r_{ij}) with r_{21} and r_{22} in W. Thus, for $z \in Je_2$, we have

$$
(0, z) \begin{bmatrix}
 r_{11} & r_{12} \\
 r_{21} & r_{22}
\end{bmatrix} = (zr_{21}, zr_{22}) = (0, 0),
$$

and thus $(0, z) + R(x, y) \in \text{Soc } M_C$.

Also, $(0 \oplus Je_2) + R(x, y)/R(x, y)$ belongs to the kernel of every homo-
morphism \(\mathfrak{r} M \to R(1 - e_1) \). For, we may lift such a morphism to

\[
\begin{bmatrix}
 r_1 \\
r_2
\end{bmatrix} : Re_1 \oplus Re_2 \to R(1 - e_1)
\]

with \(r_1 \in e_1 R(1 - e_1) \), mapping \((x, y)\) into \(0 \). The last condition gives us the equality \(x r_1 + y r_2 = 0 \), thus, since \(x \in J \) and \(r_1 \in e_1 R(1 - e_1) \subseteq W \), we get \(y r_2 = 0 \). This shows that not only \(r_1 \) but also \(r_2 \) belongs to \(W \), and, as a consequence, the image of \((0, z) \in 0 \oplus J e_2 \) under \(\begin{bmatrix} r_1 \\
r_2
\end{bmatrix} \) is \(z r_1 + z r_2 = 0 \).

Since \(x, y \in J \), every matrix

\[
\begin{bmatrix}
 r_{11} & r_{12} \\
r_{21} & r_{22}
\end{bmatrix}
\]

with \(r_{ij} \in e_1 We_j \)

induces a nilpotent endomorphism of \(\mathfrak{r} M \), thus \(We_1 \oplus We_2/R(x, y) \subseteq M W \). Moreover, if \(e_1 \) and \(e_2 \) are orthogonal, we have the equality

\[
We_1 \oplus We_2/R(x, y) = M W.
\]

For, assume that \(\begin{bmatrix} r_{11} & r_{12} \\
r_{21} & r_{22}
\end{bmatrix} \) with \(r_{ij} \in e_1 Re_j \) induces an endomorphism \(\varphi \) of \(\mathfrak{r} M \); then \(r_{12} \in e_1 Re_2 \subseteq W \), and, if \(\varphi \) is nilpotent, we conclude similarly to a proof above that

\[
(x, 0) \begin{bmatrix}
 r_{11} & r_{12} \\
r_{21} & r_{22}
\end{bmatrix}^n = (x r_{11}^n, 0),
\]

and that therefore also \(r_{11} \in W \). This shows that for \(\varphi \in W \), all \(r_{ij} \)'s belong to \(W \), so \(M W \subseteq We_1 \oplus We_2/R(x, y) \).

Next, we claim that \((e_1, 0) + R(x, y)\) does not belong to \(M W = \text{Rad} M_\mathfrak{r} \). This is obvious in the case where \(e_1 \) and \(e_2 \) are orthogonal. So, we only consider the case \(e = e_1 = e_2 \). If we assume that \((e, 0) + R(x, y)\) belongs to \(M W \), then, since \(M W \) is a proper \(R \)-submodule of \(\mathfrak{r} M \) also containing \(We \oplus We/R(x, y) \), we have \(M W = Re \oplus We/R(x, y) \). Also, \(\text{Soc} M_\mathfrak{r} \) is an essential \(\mathfrak{c} \)-submodule of \(M \), thus \((Je \oplus Je) + R(x, y)/R(x, y)\) intersects \(\text{Soc} M_\mathfrak{r} \) nontrivially. Therefore, there is a non-zero \(\mathfrak{c} \)-homomorphism \(\psi \) of the form

\[
M_\mathfrak{r} \hookrightarrow M/M W \to (Je \oplus Je) + R(x, y)/R(x, y) \overset{\iota}{\to} M_\mathfrak{r},
\]

where \(\iota \) is the canonical epimorphism, \(\iota \) the embedding. The image of every \(R \)-homomorphism \(R(1 - e) \to \mathfrak{r} M \) is contained in \(We \oplus We/R(x, y) \subseteq M W \), since we may lift such a morphism to

\[
R(1 - e) \rightarrow \begin{bmatrix} r_1 \\
r_2
\end{bmatrix} Re \oplus Re
\]

with \(r_1 \in (1 - e)Re \subseteq W \). On the other side, \((Je \oplus Je) + R(x, y)/R(x, y)\) is contained in the kernel of every morphism \(\mathfrak{r} M \to R(1 - e) \). Thus the trivial extension \(\psi' \) of \(\psi \) to \(\mathfrak{r} M \oplus R(1 - e) \) belongs to the double centralizer of
$R M \oplus R(1 - e)$. But this morphism ψ' vanishes on $M \oplus R(1 - e)$ which is a faithful module since Re is embeddable in $(Re \oplus We)/R(x, y) = M \oplus W$. This shows that ψ' cannot be induced by multiplication, a contradiction. So we have shown that $(e, 0) + R(x, y)$ cannot belong to $M \oplus W$.

There is a \mathcal{C}-submodule M' of M which contains $M \oplus W$ and also the images of all R-homomorphisms $R(1 - e_1) \to R M$, but which does not contain the element $(e_1, 0) + R(x, y)$. For, in the case where e_1 and e_2 are orthogonal, choose $M' = (W e_1 \oplus Re_2)/R(x, y)$. Since all matrices $\begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix}$ which induce endomorphisms of $R M$ satisfy $r_{12}, r_{21} \in W$, we see that M' is actually a \mathcal{C}-submodule. Obviously, $M' \supseteq M \oplus W = W e_1 \oplus W e_2/R(x, y)$, and given an R-homomorphism $R(1 - e_1) \to R M$, we may lift it to

$$R(1 - e_1) \overset{(r_1, r_2)}{\to} R e_1 \oplus R e_2$$

with $r_1 \in (1 - e_1) R e_1$. But $r_1 \in (1 - e_1) R e_1 \subseteq W$, thus the image of (r_1, r_2) is contained in $W e_1 \oplus R e_2$. Secondly, consider the case $e_1 = e_2$. In this case, let $M' = M \oplus W$. Since every R-homomorphism $R(1 - e_1) \to R M$ again can be lifted to (r_1, r_2) where now both r_1 and r_2 belong to $(1 - e_1) R e_1 \subseteq W$, the image of $R(1 - e_1) \to R M$ has to be contained in

$$W e_1 \oplus W e_2/R(x, y) \subseteq M \oplus W = M'.$$

So we see that also in the second case M' satisfies all conditions.

Also, there is a \mathcal{C}-submodule M'' of M_ψ contained in $\text{Soc } M_\psi$ and in the kernel of every R-homomorphism $R M \to R(1 - e_1)$, and containing

$$(0 \oplus Je_2) + R(x, y)/R(x, y).$$

For, we simply may take the intersection of $\text{Soc } M_\psi$ and the kernels of all maps $R M \to R(1 - e_1)$.

By construction, M'/M' and M'' both are semisimple \mathcal{C}-modules. Given $z \in Je_2$, there is a \mathcal{C}-homomorphism ψ of the form

$$M_\psi \overset{\iota}{\to} M'/M' \overset{\iota}{\to} M'' \overset{\iota}{\to} M_\psi$$

(where again ι denotes the canonical epimorphism, ι the embedding) mapping $(e_1, 0) + R(x, y)$ onto the element $(0, z) + R(x, y)$. Since the image of every morphism $R(1 - e_1) \to R M$ is contained in M' and the kernel of every morphism $R M \to R(1 - e_1)$ contains M'', the trivial extension of ψ to $R M \oplus R(1 - e_1)$ belongs to the double centralizer of $R M \oplus R(1 - e_1)$. Using the fact that R is a QF-1 ring, we find an element $\rho \in R$ which induces this extension. In particular, we have

$$\rho(e_1, 0) - (0, z) \in R(x, y).$$

Thus $z \in R y$, as we wanted to prove.
3. The main theorem. The result of the previous section can be considered as a forth socle condition for QF - 1 rings. Using these socle conditions we can show

Theorem. Let R be a QF - 1 ring and assume that the right socle J of R, considered as a left module, is projective. Then R is a QF - 3 ring.

Proof. Obviously, we may assume that R is two-sided-indecomposable, i.e. that there are not two two-sided non-zero ideals I_1 and I_2 with R = I_1 ⊕ I_2. Let e and f be primitive idempotents with f(L \cap J)e ≠ 0. Then according to the second socle condition

\[\partial R Le \times \partial f J_R \leq 2. \]

We have to show that in our case the product actually is equal to 1. So, assume \(\partial R Le = 2 \) and consider first the case \(Le \subseteq Je \). The third socle condition implies \(Le = Je \). Since \(Je \) is a projective left R-module, and \(Je \) is properly contained in \(Re \), we find a non-zero idempotent \(e' \) such that \(e \) and \(e' \) are orthogonal, \(Re' \) is isomorphic to a direct summand of \(Je \), and \(Je' \neq 0 \). Then \(fL \supseteq f(L \cap J)e \oplus fLe' \) and therefore \(\partial f L_R > 1 \), a contradiction to the first socle condition. If \(Le \not\subseteq Je \), take a primitive idempotent \(f' \) and an element \(x = f'xe \in Le \setminus Je \). Let \(e' \) be a primitive idempotent and \(w = we' \in W \) with \(0 \neq xw \in L \cap J \). Then \(\partial f' L_R > 1 \), thus, using the fact that \(f'(L \cap J)e \neq 0 \) the first socle condition implies \(\partial R Je' = 1 \). As a consequence, \(R x w = Je' \) is projective and since it is isomorphic to \(R f'/Wf' \), we conclude \(Wf' = 0 \), thus \(f' \) belongs to \(L \). But since \(x \in f'Le \setminus J \) and \(Je \neq 0 \), we may apply the Proposition of section 2 to the opposite ring of \(R \) in order to conclude that \(xR = f'L \), and therefore we find \(\rho \in R \) with \(f' = x \rho = f'x \rho \). Right multiplication by \(x \) gives an isomorphism \(R f' \rightarrow Re \). But obviously \(Re \not\subseteq L \), whereas \(R f' \subseteq L \). This contradiction proves that \(\partial R Le = 1 \).

Secondly, assume \(\partial f J_R = 2 \). If \(fJ \subseteq fL \), then according to the first socle condition we have \(\partial R Je = 1 \) for every primitive idempotent \(e \) with \(fJe = 0 \). Thus \(fJ \) is a direct summand of \(R J \), and therefore also projective. This yields that \(R f' \) is of length 1, that is \(f \in L \). But the socle condition (3*) implies \(fL \subseteq fJ \), thus \(R f' \subseteq L \cap J \). Since \(R \) is assumed to be two-sided-indecomposable, we have \(R = R f' \), and \(R \) is semisimple; but then \(\partial f R_R = 1 \), a contradiction.

Next, assume \(fJ \not\subseteq fL \), and take a primitive idempotent \(e' \) and an element \(y = fye' \in fJe \setminus L \). By the result of section 2, \(Ry = Je' \), since we assume \(f(L \cap J)e \neq 0 \). Now, if \(Je' \) is a proper submodule of \(Re' \), then using the fact that \(Re' \) is projective and local, we find a primitive idempotent \(e'' \), orthogonal to \(e' \), with \(Je' = Re' \). If \(f' \) is a primitive idempotent with \(f'(L \cap J)e' \neq 0 \), then also \(f'Le' \neq 0 \), thus \(\partial f' L_R > 1 \). But since \(Je \not\subseteq L \), we also have \(\partial R Je' > 1 \). Together with \(f'(L \cap J)e' \) this gives a contradiction to the first socle condition. So, we have to assume that \(Je' = Re' \). Since \(Ry = Je' \) and \(y = fye' \), we may assume \(e' = f \). Now \(R f \subseteq J \), and \(f \not\in L \), thus no simple left ideal can be isomorphic to \(R f/Wf' \). But this is a contradiction to \(fL \neq 0 \), and therefore we have shown \(\partial f J_R = 1 \).
COROLLARY. A QF — 1 ring of left global dimension \(\leq 2 \) is a QF — 3 ring.

Proof. Let \(R \) be a QF — 1 ring of left global dimension \(\leq 2 \). If \(w_1, \ldots, w_n \) are generators of \(W_R \), consider the maps

\[
\varphi : R^R \rightarrow \bigoplus_{i=1}^n R^R
\]

with \(1 \varphi = (w_1, \ldots, w_n) \). Then the right socle \(J \) of \(R \) is just the kernel of \(\varphi \), so \(R^J \) has to be projective.

4. Remarks. If we consider the class of rings of left global dimension \(\leq 2 \), we asked in the introduction for a characterization of those rings \(R \) with \(\text{dom dim} \ R \geq 2 \). The following example shows that not all rings of global dimension \(\leq 2 \) and dominant dimension \(\geq 2 \) are QF — 1 rings.

Let \(R \) be a generalized uniserial ring with the Kupisch series

\[
1, 2, 2, 3, 2.
\]

Then, according to [3], \(R \) is not a QF — 1 ring, but since \(R \) is generalized uniserial and coincides with its complete ring of left quotients, \(\text{dom dim} \ R \geq 2 \). Also, the global dimension of \(R \) is 2.

On the other side, the QF — 1 rings of global dimension \(\leq 2 \) are not all of dominant dimension \(\geq 3 \), as Morita’s second example in [6] shows. It can easily be seen that the dominant dimension of this algebra is precisely 2.

REFERENCES

Mathematisches Institut der Universität,
Tübingen, Germany;
Carleton University,
Ottawa, Ontario