Let R be an associative ring with 1. If $_M$ is a left R-module, then M can be considered as a right $_M$-module, where $_M = \text{Hom}(_M, _M)$ is the centralizer of $_M$. There is a canonic ring homomorphism ρ from R into the double centralizer $_M = \text{Hom}(_M, _M)$ of $_M$. For a faithful module $_M$, the homomorphism ρ is injective, and $_M$ is called balanced (or to satisfy the double centralizer condition) if ρ is surjective. An artinian ring R is called a $QF-1$ ring if every finitely generated faithful R-module is balanced. This definition was introduced by R. M. Thrall as a generalization of quasi-Frobenius rings, and he asked for an internal characterization of $QF-1$ rings.

The paper establishes three properties of $QF-1$ rings which involve the left socle and the right socle of the ring; in particular, it is shown that $QF-1$ rings are very similar to $QF-3$ rings. The socle conditions are necessary and sufficient for a (finite dimensional) algebra with radical square zero to be $QF-1$, and thus give an internal characterization of such $QF-1$ algebras. Also, as a consequence of the socle conditions, D. R. Floyd's conjecture concerning the number of indecomposable finitely generated faithful modules over a $QF-1$ algebra is verified. In fact, a $QF-1$ algebra has at most one indecomposable finitely generated faithful module, and, in this case, is a quasi-Frobenius algebra.

An artinian ring R is called a $QF-1$ ring if every finitely generated faithful R-module is balanced. This definition goes back to R. M. Thrall [15] who asked for an internal description of $QF-1$ algebras. The aim of this paper is to prove the following theorem.

Theorem. Let R be a $QF-1$ ring with left socle L and right socle J. If e and f are primitive idempotents with $f(L \cap J)e \neq 0$, then

1. either $\delta_rJe = 1$ or $\delta_rfL = 1$,
2. we have $\delta_rLe \times \delta_rfJ \leq 2$, and
3. $\delta_rLe = 2$ implies $Je \subseteq Le$.

Here, δ_rI denotes the length of (a composition series of) the left ideal I, whereas δ_rK denotes the length of the right ideal K.

The second socle condition shows that $QF-1$ rings are very similar to $QF-3$ rings, because an artinian ring is a $QF-3$ ring if and only if for every pair e, f of primitive idempotents with $f(L \cap J)e \neq 0$,
we have $\partial_1 Le = 1 = \partial_2 fJ$ (c.f. [15], [8]); however it is known [11], that there are QF-1 rings which are not QF-3 rings.

For a finite dimensional algebra R with radical square zero, the socle conditions above are necessary and sufficient in order that R is QF-1. The proof uses the fact that an algebra with radical square zero which satisfies the second socle condition is of cyclic-cocyclic representation type, as H. Tachikawa [13] has shown. As a consequence, an algebra R with radical square zero is QF-1 if and only if R is of cyclic-cocyclic representation type and coincides both with its complete ring of left quotient and its complete ring of right quotients.

Besides an internal description of at least the QF-1 algebras with radical square zero, we can derive from the socle conditions the verification of a conjecture concerning the number of indecomposable finitely generated faithful modules over a QF-1 algebra. D. R. Floyd has conjectured that for a given QF-1 algebra the length of such modules is bounded. J. P. Jans proved this under a rather technical condition on the indecomposable finitely generated modules [10]. Here we show that a QF-1 algebra has at most one indecomposable finitely generated faithful module, and, if such a module exists, is even a quasi-Frobenius algebra.

The methods used here are similar to those developed in the joint work with V. Dlab on balanced rings ([3], [4], [5]) and the author would like to thank him for various discussions during the preparation of this paper. Most of it was written while the author was a member of the summer research institute of the Canadian Mathematical Congress in Kingston, Ontario.

1. Preliminaries. Throughout the paper, R denotes a ring with unity, R^* its opposite. Algebras are always assumed to be defined over a field and to be finite dimensional. By an R-module we understand a unital R-module and the symbols $\underline{\kappa} M$ of M_κ will be used to underline the fact that M is a left or a right R-module, respectively. Usually left R-modules will be considered, but it should be noted that homomorphisms always act from the opposite side as the operators; in particular, every left R-module M defines a right \mathcal{C}-module, where \mathcal{C} is the endomorphism ring of $\underline{\kappa} M$. The ring \mathcal{C} is called the centralizer of M. The double centralizer \mathcal{D} is the endomorphism ring of $M_{\mathcal{D}}$. Again, \mathcal{D} operates from the opposite side as \mathcal{C}, that is from the left. There is a canonic ring homomorphism from R into \mathcal{C}; if this homomorphism is surjective, then M is called balanced, or to have the double centralizer property. If every finitely generated faithful (left or right) R-module is balanced, then R is called a QF-1 ring [15].
Given an \(R \)-module \(M \), denote by \(\text{Rad} M \) the intersection of all maximal submodules; \(\text{Rad} M \) is the set of all nongenerators. The radical of the ring \(R \) is by definition \(\text{Rad}_R R \), it will consistently be denoted by \(W \) (the radical of \(\mathcal{C} \) will be denoted by \(\mathcal{W} \)). If \(R/W \) is artinian, then \(WM = \text{Rad} M \) for every left \(R \)-module \(M \). If \(\text{Rad} M \) is the only (proper) maximal submodule of \(M \), then \(M \) is called local; and, if \(_R R \) (and equivalently \(R_R \)) is local, then \(R \) is called a local ring. Corresponding to the notion of a local module is that of a colocal module. \(M \) is called colocal, if \(M \) has exactly one minimal submodule. Generally, the union of all minimal submodules of \(M \) is the socle \(\text{Soc} M \). If \(R/W \) is artinian, then \(\text{Soc} M = \{ m \in M \mid Wm = 0 \} \) for every left \(R \)-module \(M \). Considering \(_R R \), we get the left socle \(L = \text{Soc} _R R \) of \(R \); considering \(R_R \), we get the right socle \(J = \text{Soc} R_R \) of \(R \). Also, we denote by \(S \) the intersection of left socle and right socle of the ring \(R \). The length of a composition series of a left ideal \(I \) will be denoted by \(d_I \); similarly, \(d_J \) denotes the length of the right ideal \(K \).

If \(e \) is an idempotent of \(R \), then \(Re \) will be considered as a left \(R \)-module. It is well-known that for two idempotents \(e \) and \(e' \) the morphisms \(Re \rightarrow Re' \) (i.e. the \(R \)-homomorphisms) can be identified with the elements in \(eRe' \). In particular, the endomorphism ring of \(Re \) is given by \(eRe \). If the idempotent \(e \) is primitive, then \(eRe \) is a local ring and \(eWe \) its radical. If \(R \) is a (left and right) artinian ring, then \(1 = \sum_{i=1}^s \sum_{j=1}^{u_i} e_{ij} \), where the \(e_{ij} \)'s are primitive and pairwise orthogonal idempotents and \(Re_{ij} \cong Re_{kl} \) if and only if \(i = k \). The ring \(ERE \) with \(E = \sum_{i=1}^s e_{ii} \) is called a basis subring of \(R \). The rings \(R \) and \(ERE \) are Morita equivalent. An artinian ring \(R \) is called a basis ring if it coincides with a basis subring of itself. This is equivalent to the assertion that for orthogonal idempotents \(e \) and \(e' \), \(Re \) and \(Re' \) are never isomorphic. Basis rings have several pleasant properties: for any idempotent \(e \) we have \(eR(1-e) \subseteq W \), and, if \(X \) is a simple left \(R \)-module with \(eX \neq 0 \), then \((1-e)X = 0 \); in particular, \(eL \) is a two-sided ideal. Also, the radical of a basis ring \(R \) is the set of all nilpotent elements in \(R \). In the proof of the socle conditions we will always assume that the ring \(R \) is a basis ring. This is possible, because, on the one hand, the property to be a QF-1 ring is Morita equivalent [12], whereas, on the other hand, the socle conditions are true for \(R \) if and only if they are true for a basis subring of \(R \).

The left \(R \)-module \(M \) is called indecomposable, if \(M \) cannot be written as the direct sum of two proper submodules. If \(M \) is indecomposable and of finite length, then the centralizer \(\mathcal{C} \) of \(M \) is a local ring. Moreover, if \(\mathcal{W} \) denotes the radical of \(\mathcal{C} \), then there exists a composition series
such that $M_i \subseteq M_{i-1}$ for all i [1]. Thus,

$$M_i \subseteq \text{Soc } M_\varphi \text{ and } M \not\subseteq \text{Rad } M_\varphi \subseteq M_{n-1}.$$

It should be stressed that, for a local ring R with radical W, R/W is a division ring. Thus, the semisimple modules over a local ring behave like vector spaces. In particular, applying this to the centralizer C of an indecomposable module M of finite length, there exists to every element $m \in M \setminus M/W$ and $x \in \text{Soc } M_\varphi$ a C-homomorphism of the form

$$M_\varphi \xrightarrow{\varepsilon} M/W \rightarrow \text{Soc } M_\varphi \rightarrow M_\varphi,$$

(where ε denotes the canonic epimorphism and ι the inclusion) mapping m onto x. This will be used frequently throughout the paper, and in similar cases, ε and ι will always denote the canonic morphisms.

Two other useful tools which are by now well-known shall be mentioned here. The first is Morita's criterion for faithful modules to be balanced. Let M and N be two left R-modules. Then M is said to generate N, if the images of all morphisms $M \rightarrow N$ generate N; and M is said to cogenerate N, if the intersection of the kernels of all morphisms $N \rightarrow M$ is zero. With these definitions we can formulate:

Morita's criterion [11]: Let M be faithful and balanced, and let N be indecomposable. Then, $M \oplus N$ is balanced if and only if M either generates or cogenerates N.

The second method to be mentioned here is the trivial extension of morphisms. Assume, M and N are left R-modules, C is the centralizer of M, and M' and M'' are C-submodules of M. Assume also, that there is defined a C-homomorphism ψ of the form

$$M_\varphi \xrightarrow{\varepsilon} M/M' \rightarrow M'' \rightarrow M_\varphi.$$

We want to extend ψ to an element of the double centralizer of $M \oplus N$.

Trivial extension: If the image of every R-homomorphism $N \rightarrow M$ is contained in M', and if M'' is contained in the kernel of every R-homomorphism $M \rightarrow N$, then $\begin{pmatrix} \psi \\ 0 \\ 0 \end{pmatrix}: M \oplus N \rightarrow M \oplus N$ defines an element of the double centralizer of $M \oplus N$.

The proofs are omitted; they may be found in several papers.
dealing with double centralizers. Some other definitions and remarks which will be needed only in §7, will be given there.

2. Construction of indecomposable modules. An essential tool in the study of QF-1 rings are indecomposable modules. Here, we prove that certain amalgamations of two principal indecomposable modules are indecomposable.

Lemma. Let R be left artinian with left socle L and right socle J. Let e_1, e_2 and f be primitive idempotents such that e_1 and e_2 are either equal or orthogonal. Let $a_1 \in f(L \cap J)e_1$ and $a_2 \in fJe_2$ be nonzero elements with $a_1R \cap a_2R = 0$. Then

$$M = (Re_1 \oplus Re_2)/(R(a_1, a_2))$$

is an indecomposable left R-module.

Proof. We may suppose that R is a basis ring. For, without loss of generality, we may assume that $e_1 = e_2$, if Re_1 is isomorphic to Re_2, and, similarly, that $f = e_1$ or $f = e_2$, if Rf is isomorphic to Re_1 or to Re_2, respectively. But then there exists a basis subring R_0 of R, containing all the elements e_1, e_2, f, a_1 and a_2. We may apply the lemma to R_0 and the Morita equivalence of R_0 and R gives the result for R.

First, let us assume that e_1 and e_2 are orthogonal. The endomorphisms of M are induced by matrices (r_{ij}) with entries $r_{ij} \in e_iRe_j$ for $1 \leq i, j \leq 2$. The fact that R is a basis ring implies that both r_{12} and r_{21} belong to W, because e_1 and e_2 are orthogonal. If (r_{ij}) induces an endomorphism of M, then there exists $\lambda \in \mathbb{R}$ with

$$(a_1, a_2)\begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix} = (a_1r_{11}, a_2r_{22}) = (\lambda a_1, \lambda a_2) .$$

Here we have used that a_1 and a_2 are elements of J. We want to show that $r_{11} \in W$ if and only if $r_{22} \in W$. If $r_{11} \in W$, then $\lambda a_1 = a_1r_{11} = 0$, because $a_1 \in J$. But since a_1 and a_2 both are in fR, we may assume that $\lambda \in fR$. Then, $\lambda a_2 = 0$ implies $\lambda \in W$. The equation $\lambda a_2 = a_2r_{22}$ implies $\lambda^na_2 = a_2r_{22}^n$ for all natural n. Thus, the nilpotency of λ shows that $a_2r_{22}^n = 0$ for some n, and r_{22} cannot be a unit in e_2Re_2. Conversely, assume that $r_{22} \in W$. Then we conclude from $\lambda a_2 = a_2r_{22} = 0$ that $\lambda f \in W$ which in turns implies $a_1r_{11} = \lambda a_1 = 0$, because $a_1 \in L$, and thus $r_{11} \in W$. As a consequence, an endomorphism of M is either nilpotent (if the corresponding matrix has only entries in W) or is an isomorphism (if the elements r_{11} and r_{22} of the corresponding matrix are units in e_1Re_1 and e_2Re_2, respectively). This shows that the endo-
morphism ring of M is a local ring, and therefore, M is indecomposable.

Next, we assume that $e^2 = e$ and denote it simply by e. In the case where also a_2 belongs to L, a length-counting argument gives the result. For, if there is a proper direct decomposition of M, then $\delta_i(M/Rad M) = 2$ implies that there are elements x and y in M with $M = Rx \oplus Ry$. We may assume $x = ex$ and $y = ey$, because if $x + Rad M$ and $y + Rad M$ generate $M/Rad M$, also $ex + Rad M$ and $ey + Rad M$ generate $M/Rad M$; thus ex and ey generate M, and, of course $Re \cap Ry = 0$. So Rx and Ry are isomorphic to quotient modules of Re. In particular, we have either $Rx \cong Re$ or $Ry \cong Re$, because $\delta_i M = 2 \cdot \delta_i Re - 1$. Thus, we have an epimorphism $M \to Re$. But given elements s_1 and s_2 in eRe such that

$$\begin{pmatrix} s_1 \\ s_2 \end{pmatrix}$$

maps (a_1, a_2) into 0, the equality

$$a_2s_1 + a_2s_2 = 0$$

implies that $a_2s_1 = 0 = a_2s_2$ and both elements s_1 and s_2 belong to W. Therefore, no morphism $M \to Re$ is surjective. This contradiction shows that M is indecomposable.

There only remains the case where $e = e_1 = e_2$ and a_2 does not belong to the left socle L. Let c be a nonzero element in $Ra_2 \cap L$. Of course, c belongs to Wa_2, so we find $w \in W$ with $c = wa_2$.

Again, we will represent the endomorphisms of M by matrices (r_{ij}), now with entries in eRe. First, let us show $r_{21} \in W$ for any matrix arising in this way. The element $(0, c) = (w_{a_1}, wa_2)$ of $Re \oplus Re$ is mapped under (r_{ij}) onto

$$\begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix} \begin{pmatrix} 0 \\ c \end{pmatrix} = (cr_{21}, cr_{22}) ,$$

and this element has to belong to $R(a_1, a_2)$. That is, we find $\lambda \in Re$ with

$$(cr_{21}, cr_{22}) = (\lambda a_1, \lambda a_2) .$$

If we assume that r_{21} is a unit in eRe, then $\lambda a_1 = cr_{21} \neq 0$, so $f\lambda$ is a unit in fRe. But $f\lambda a_2 = fcr_{22}$ belongs to L, and $a_2 = fa_2 \in L$, so $f\lambda$ cannot be a unit in fRe.

Next, let us show that $r_{22} \in W$ implies $r_{21} \in W$. For, assuming $r_{21} \in W$ and applying (r_{ij}) to (a_1, a_2), we get $\lambda' \in Re$ with

$$\begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = (0, a_2r_{21} + a_2r_{22}) = (\lambda'a_1, \lambda'a_2) .$$
Now $\lambda'a_1 = 0$ implies that $\lambda' \in W$, so we have the relation

$$a_2r_{22} = \lambda'a_2 - a_2r_{12} \in Wa_2 + L.$$

If r_{22} is a unit in eRe, then we have

$$a_2 \in Wa_2R + L.$$

But then we also have $a_2 \in W^*a_2R + L$ for all natural n, so $a_2 \in L$, because W is nilpotent. This contradicts the assumption on a_2.

Now we want to derive that for any natural n there is $r_n \in eRe$ with

$$(a_1, a_2) \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix}^n = (a_1r_{11}^n, a_1r_{12} + a_2r_{22}^n).$$

For $n = 1$, we take $r_n = r_{12}$ and note that $a_2r_{21} = 0$, because $a_2 \in J$ and $r_{21} \in W$. If we assume the equality for n, we get

$$(a_1, a_2) \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix}^{n+1} = (a_1r_{11}^n, a_1r_{12} + a_2r_{22}^n) \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix}$$

$$= (a_1r_{11}^{n+1}, a_1(r_{11}r_{12} + r_{21}r_{22}) + a_2r_{22}^{n+1}),$$

using that both $a_1, a_2 \in J$ and $r_{21} \in W$.

Since (a_1, a_2) is always mapped into $R(a_1, a_2)$, we find for any natural n an element $\lambda_n \in Rf$ with

$$(a_1r_{11}^n, a_1r_{12} + a_2r_{22}^n) = (\lambda_n a_1, \lambda_n a_2).$$

As a consequence, if $r_{11} \in W$, then also $r_{22} \in W$. For, $\lambda_n a_1 = a_1r_{11}^n \neq 0$ implies that λ_n does not belong to W, so $f\lambda_n$ is a unit in fRf. But if $r_{21} \in W$, then r_{22} is nilpotent, and thus, for some n, we have $a_2r_{21} = \lambda_n a_2$ and also $a_2r_{22} = f\lambda_n a_2$. Since a_1 belongs to the left socle L, and $a_3 \in L$, we conclude that $f\lambda_n$ cannot be a unit in fRf.

So we have shown that $r_{11} \in W$ if and only if $r_{22} \in W$. Consequently, an endomorphism of M induces on $M/\text{Rad} M = Re/We \oplus Re/We$ either a nilpotent endomorphism (if the elements r_{11}, r_{21} and r_{22} of the corresponding matrix are in W) or an isomorphism (if for the corresponding matrix, $r_{21} \in W$ but r_{11} and r_{22} both are units in eRe). Thus, the endomorphism of M itself is either nilpotent or an isomorphism. This proves the lemma in the remaining case.

3. The third socle condition. We assume throughout §3, 4 and 5 that R is a basis ring with left socle L, right socle J and that e and f are primitive idempotents with $f(L \cap J)e \neq 0$. We denote by S the intersection $S = L \cap J$ of left socle and right socle. Also we will assume that R is a QF-1 ring.
Our first aim is to prove the third socle condition, or formally more general, we show that \(\partial_1 Le \geq 2 \) implies \(Je \subseteq Le \). This we will use in the proof of the second socle condition, from which it then follows that always \(\partial_1 Le \leq 2 \). Also it should be noted that in this section the assumption of the existence of \(f \) with \(f(L \cap J)e \neq 0 \) is irrelevant; if \(f(L \cap J)e = 0 \) for all primitive idempotents \(f \), then, trivially, \(Je \subseteq Le \).

Let us now assume \(\partial_1 Le \geq 2 \). We distinguish two cases (which are not mutually exclusive).

Case 1. There is a minimal left ideal \(C \) contained in \(Se \) with \(CeRe \not\subseteq C \). Thus, we find an element \(r \in eRe \) with \(Cr \not\subseteq C \), and \(r \) is a unit of \(eRe \), because \(C \) is contained in \(S \). Also, \(R/C \) is a faithful left \(R \)-module.

The elements of the centralizer of \(R/C \) can be lifted to elements of the ring
\[
T = \{ t \in R; Ct \subseteq C \}.
\]
Because \(C \subseteq Se \), the radical \(W \) is contained in \(T \). Also, if \(t_1 \) and \(t_2 \) are elements of \(eRe \) with \(t_1 t_2 = e \), then \(t_i \) belongs to \(T \) if and only if \(Ct_i = C \).

Let us verify the following inclusion
\[
(e + C)eTe \cap (r + C)eTe \subseteq We.
\]
Since \(e \) and \(C \) both belong to \(T \), we have \((e + C)T \subseteq T \). So let us assume that \(\Sigma(r + c_i)t_i \in T \), with \(c_i \in C \) and \(t_i \in eTe \). Now, \(\Sigma(r + c_i)t_i = r(\Sigma t_i) + \Sigma c_i t_i \) together with \(C \subseteq T \) implies that \(r(\Sigma t_i) \in T \). We want to show that \(t = \Sigma t_i \) belongs to \(W \). If not, then \(Ct = C \) and also \(Ct' = C \) for \(t' \) with \(tt' = e \); but since \(rt \in T \), we conclude from \(Cr \subseteq C \) that \(Cr \subseteq Ct' = C \). This contradiction shows that \(t \in W \). Together with the fact \(c_i \in W \) for all \(i \), this implies that \(\Sigma(r + c_i)t_i = rt + \Sigma c_i t_i \in W \).

Let us denote by \(\mathcal{C} \) the centralizer of \(Re/C \) and by \(\mathcal{W} \) the radical of \(\mathcal{C} \). The elements of \(\mathcal{C} \) can be lifted to elements of \(eTe \) and, in this way, the elements of \(\mathcal{W} \) correspond to those in \(eWe \). In particular, both \(We/C \) and \(Je/C \) are \(\mathcal{C} \)-submodules of \((Re/C)_{\mathcal{C}} \) and \(We/C \) contains the radical \((Re/C)_{\mathcal{W}} \) of the \(\mathcal{C} \)-module \((Re/C)_{\mathcal{C}} \), whereas \(Je/C \) is contained in the socle of the \(\mathcal{C} \)-module \((Re/C)_{\mathcal{C}} \). We may, for arbitrary \(x \in Je \), define a \(\mathcal{C} \)-homomorphism \(\psi \) of the form
\[
(Re/C)_{\mathcal{C}} \xrightarrow{\varepsilon} Re/We \xrightarrow{\iota} Je/C \xrightarrow{t} (Re/C)_{\mathcal{C}}
\]
which maps \(e + C \) onto \(0 \) and \(r + C \) onto \(x + C \). This is possible, because \(e + We \) and \(r + We \) are \(\mathcal{C} \)-independent, according to the
inclusion \((e + C)eTe \cap (r + C)eTe \subseteq We\) proved above. Now, the image of every \(R\)-homomorphism \(R(1 - e) \rightarrow Re/C\) is contained in \(We/C\), whereas the kernel of every \(R\)-homomorphism \(Re/C \rightarrow R(1 - e)\) contains \(Je/C\). This follows from the fact that such morphisms are given by elements in \((1 - e)Re\) and \(eR(1 - e)\), respectively, and both \((1 - e)Re\) and \(eR(1 - e)\) are contained in \(W\). As a consequence, the trivial extension of \(\varphi\) to \(Re/C \oplus R(1 - e)\) belongs to the double centralizer of \(Re/C \oplus R(1 - e)\). Because \(R\) is a \(QF-1\) ring, we find an element \(\rho \in R\) which induces this element of the double centralizer. In particular,
\[
\rho e \in C \quad \text{and} \quad \rho r - x \in C.
\]
Taking into account that \(r = er\), we see that
\[
x \in C + Cr \subseteq Le.
\]
This proves the inclusion \(Je \subseteq Le\) in the first case.

Case 2. There is a minimal left ideal \(A\) contained in \(Re\) with \(AeRe \subseteq A\). Let \(B\) be a minimal left ideal contained in \(Re\), different from \(A\). It is easy to see that an element \(r \in eRe\) with \(Ar \subseteq B\) or with \(Br \subseteq A\) belongs to \(W\). For, in the first case, \(Ar \subseteq A \cap B = 0\), thus \(r\) cannot be a unit of \(eRe\); similarly, in the second case, \(r\) cannot be a unit of \(eRe\), because otherwise the element \(r' \in eRe\) with \(rr' = e\) would satisfy \(Ar' = B\).

Now let \(\mathcal{C}\) be the centralizer of \(Re/A\), and \(\mathcal{W}\) the radical of \(\mathcal{C}\). Both \(We/A\) and \(Je + A/A\) are \(\mathcal{C}\)-submodules of \(Re/A\), and \(We/A\) contains the radical \((Re/A)\mathcal{W}\) of the \(\mathcal{C}\)-module \((Re/A)\mathcal{W}\), whereas \(Je + A/A\) is contained in the socle of \((Re/A)\mathcal{W}\). This follows from the fact that the elements of \(\mathcal{W}\) can be lifted to certain elements in \(eWe\). As a consequence, we may for arbitrary \(x \in Je\) define a \(\mathcal{C}\)-homomorphism
\[
(Re/A) \xrightarrow{\varepsilon} Re/We \rightarrow Je + A/A \xrightarrow{\iota} (Re/A)_c
\]
mapping \(e + A\) onto \(x + A\).

Let us consider the trivial extension of \(\varphi\) to \(Re/A \oplus Re/B \oplus R(1 - e)\). Since every \(r \in eRe\) with \(Br \subseteq A\) belongs to \(W\), we know that the image of every \(R\)-homomorphism \(Re/B \rightarrow Re/A\) is contained in \(We/A\). Also, the image of every \(R\)-homomorphism \(R(1 - e) \rightarrow Re/A\) is contained in \(We/A\), because we may lift the morphism to get an element in \((1 - e)Re \subseteq W\). On the other hand, \(Je + A/A\) is contained in the kernel of every \(R\)-homomorphism \(Re/A \rightarrow Re/B\) and \(Re/A \rightarrow R(1 - e)\); for, these morphisms correspond to elements in \(eWe\) or \(eR(1 - e)\), respectively. Thus, the trivial extension of \(\varphi\) to \(Re/A \oplus Re/B \oplus R(1 - e)\) belongs to the double centralizer of \(Re/A \oplus Re/B \oplus R(1 - e)\).
By assumption, R is a QF-1 ring, therefore we find an element $\rho \in R$
inducing this element of the double centralizer. In particular,
$$\rho e - x \in A \text{ and } \rho e \in B ,$$
where the last relation follows from the fact that $\rho (Re/B) = 0$. This
implies that
$$x \in A + B \subseteq L e .$$
So we proved the inclusion $Je \subseteq Le$ also in the second case.

4. The first socle condition. We assume, as we have mentioned
before, that the basis ring R is a QF-1 ring with left socle L, right
socle J and that e and f are primitive idempotents with $fSe \neq 0$,
where $S = L \cap J$. We want to show that either $\partial_rJe = 1$ or $\partial_r f L = 1$;
thus, for the contrary, let us assume both $\partial_rJe > 1$ and $\partial_r f L > 1$.
First, we prove
\[(1) \quad \partial_r f Se = 1 . \]

If we assume $\partial_r f Se > 1$, then we find elements a and b in fSe
such that aR and bR are independent right ideals. We consider the
indecomposable left R-module
$$M = (Re \oplus Re)/R(a, b) .$$
Let \mathcal{E} be its centralizer, and \mathcal{W} the radical of \mathcal{E}.

The radical M/\mathcal{W} of the \mathcal{E}-module M_φ is contained in $(We \oplus We)/R(a, b)$. Otherwise, either $(e, 0) + R(a, b)$ or $(0, e) + R(a, b)$ would be
mapped under some $\varphi \in \mathcal{W}$ onto an element $m \in M \setminus (We \oplus We)/R(a, b)$.
Now $m = em$, thus the natural map $Re \xrightarrow{\gamma} Rm$ is surjective. The
element m together with either $(e, 0) + R(a, b)$ or with $(0, e) + R(a, b)$
generate M. Using the fact that M is indecomposable, we see by a
length counting argument that γ has to be an isomorphism. Let us set
$$M' = M/\mathcal{W} + (We \oplus We)/R(a, b) .$$
This is a \mathcal{E}-submodule of M and it follows from $M \neq M/\mathcal{W}$ that we
also have $M \neq M'$. Similarly, we form
$$M'' = \text{Soc} M_\varphi \cap (Se \oplus Se)/R(a, b) .$$
It is easy to see that $(Se \oplus Se)/R(a, b)$ is a nonzero \mathcal{E}-submodule of
M, thus it has a nontrivial intersection with $\text{Soc} M_\varphi$. Because both
M/M' and M'' are nonzero semisimple \mathcal{E}-modules, there exists a
nonzero \mathcal{E}-homomorphism ψ of the form
$$M_\varphi \xrightarrow{\psi} M/M' \longrightarrow M'' \longrightarrow M_\varphi .$$
SOCLE CONDITIONS FOR QF-1 RINGS 319

Every R-homomorphism $R(1-e) \to M$ maps into $(We \oplus We)/R(a, b) \subseteq M'$, and every R-homomorphism $M \to R(1-e)$ vanishes on $M'' \subseteq (Se \oplus Se)/R(a, b)$. Thus the trivial extension ψ' of ψ vanishes on $Rm \oplus R(1-e)$, because $m \in M'' \subseteq M'$. The module $Rm \oplus R(1-e)$ is isomorphic to $Re \oplus R(1-e) = xR$; thus, if ψ' is induced by multiplication, then ψ' has to be zero. This contradiction proves that $M'' \subseteq (We \oplus We)/R(a, b)$.

As a consequence, $(Je \oplus Je)/R(a, b)$ is contained in $\text{Soc} M_x$. This follows from the fact that, if we lift the elements of e to 2×2-matrices with entries in eRe, we get for the elements of \mathcal{W} just the matrices with entries in eWe.

Both $(We \oplus We)/R(a, b)$ and $(Je \oplus Je)/R(a, b)$ are e-submodules of M_x. Thus given an element $x \in Je$, we may define a e-homomorphism ψ of the form

$$ M_x \xrightarrow{\psi} (Re \oplus Re)/(We \oplus We) \xrightarrow{\iota} (Je \oplus Je)/R(a, b) \xrightarrow{\tau} M_x, $$

mapping $(0, e) + R(a, b)$ onto $(x, 0) + R(a, b)$. Using the fact that the image of every R-homomorphism $R(1-e) \to M$ is contained in $(We \oplus We)/R(a, b)$ and that $(Je \oplus Je)/R(a, b)$ is contained in the kernel of every R-homomorphism $M \to R(1-e)$, we see that the trivial extension of ψ to $M \oplus R(1-e)$ belongs to the double centralizer of $M \oplus R(1-e)$. Therefore, we find an element $\rho \in R$ with

$$(0, \rho e) - (x, 0) \in R(a, b),$$

in particular, $x \in Ra$. As a consequence, $Je \subseteq Ra$. But this contradicts the assumption $\partial_x Je > 1$. Thus we have proved (1).

(2) $fSe = fS$.

Assume that we find a primitive idempotent e' orthogonal to e, such that $fSe' \neq 0$. Let a be a nonzero element in fSe, and a' a nonzero element in fSe'. We form $R/R(a + a')$. It is easy to see that $R(a + a')$ is a minimal left ideal which is not twosided. For, $a + a' = f(a + a')$ implies that $R(a + a') \approx Rf/Wf$, so $R(a + a')$ is a minimal left ideal, and if it is twosided, it would contain $(a + a')e = a$ as well as $(a + a')e' = a'$. Thus, $R/R(a + a')$ is a faithful left R-module. The elements of the centralizer of $R/R(a + a')$ can be lifted to elements in R, and in this way we just get the elements of the ring

$$ T = \{ t \in R; (a + a')t \in R(a + a') \}. $$

The right ideals aR and $a'R$ are independent, thus $M = R(e + e')/R(a + a')$ is an indecomposable left R-module. The elements of the
centralizer \mathcal{C} of M can be lifted to the form $t = (e + e')t(e + e') \in T$. In this way, the elements of the radical \mathcal{W} of \mathcal{C} correspond to elements in $T \cap W$. For, if $t = (e + e')t(e + e') \in T$ induces a nilpotent endomorphism of $R(e + e')/R(a + a')$, then

$$(e + e')t^n \in R(a + a')$$

for some n, but then $t^{2n} = (e + e')t^n(e + e')t^n = 0$ and $t \in W$. This implies that

$$M\mathcal{W} \subseteq W(e + e')/R(a + a')$$

and

$$J(e + e')/R(a + a') \subseteq \text{Soc } M_{\mathcal{W}}.$$

Now let x be an element in Je. We may define a \mathcal{W}-homomorphism φ of the form

$$M_{\mathcal{W}} \xrightarrow{\varepsilon} R(e + e')/W(e + e') \longrightarrow J(e + e')/R(a + a') \longrightarrow M_{\mathcal{W}},$$

mapping $e' + R(a + a')$ onto $x + R(a + a')$. Every R-homomorphism $R(1 - e - e') \rightarrow M$ maps into $W(e + e')/R(a + a')$, and every R-homomorphism $M \rightarrow R(1 - e - e')$ vanishes on $J(e + e')/R(a + a')$; thus, the trivial extension of φ to $R/R(a + a') = R(e + e')/R(a + a') \oplus R(1 - e - e')$ belongs to the double centralizer of $R/R(a + a')$. This implies that there is an element $\rho \in R$ with

$$\rho e' - x \in R(a + a').$$

Multiplication from the right by e gives $x \in Ra$. This shows that $Je \subseteq Ra$. But $a \in Je$, so we have proved that $Je = Ra$ is a minimal left ideal. This contradicts the assumption $\partial_e Je > 1$. Thus we have proved (2).

$$(3) \quad Je = fSe.$$

According to (1) and (2), we know that $\partial_e fS = 1$. The assumption $\partial_e fL > 1$ therefore implies the existence of an element $c \in fL \setminus fS$.

We may choose such an element $c \in fL \setminus fS$ which satisfies moreover $cW \subseteq fS$ and either $c = ce$ or $c = c(1 - e)$, also we find $w \in We$ with $0 \neq w$. The first assertion is easy to see: if we have chosen $c' \in fL \setminus fS$ and $c'W \subseteq fS$, then there is a largest integer n such that $c'W^n \subseteq fS$, because W is nilpotent. But then every element $c \in c'W^n \setminus fS$ belongs to $fL \setminus fS$ and satisfies $cW \subseteq c'W^{n+1} \subseteq fS$. One of the elements ce and $c(1 - e)$ has the same properties. For the second assertion, take $w' \in W$ with $0 \neq cw'$. Such an element exists, because c does not belong to J. Now $cw' \in cW \subseteq fS = fSe$, thus $cw' = cw'e$, and we
may take \(w = w'e \).

Let \(C \), be a complement of \(fSe \cap RcRe \) in the left \(R \)-module \(RcRe \) that, in the case \(e = ce \), contains \(c \), and let \(C_2 = RcR(1 - e) \). Then \(C = C_1 \oplus C_2 \) contains \(e \) and has the following two properties

\[
Ce \subseteq C \quad \text{and} \quad C \oplus (fSe \cap RcRe) = RcR.
\]

Also, \(C \) does not contain a nonzero twosided ideal, because the fact \(C \subseteq fL \) implies

\[
C \cap S = C \cap fS = C \cap fSe = 0.
\]

Consequently, \(R/C \) is a faithful left \(R \)-module.

The elements of the centralizer of \(R/C \) can be lifted to the elements of

\[
T = \{ t \in R; Ct \subseteq C \}.
\]

We have the following inclusion

\[
R(T \cap W) \subseteq T.
\]

For, assume \(r \in R \) and \(t \in T \cap W \). If \(d \) is an arbitrary element of \(C \), then \(dr \in RcR = C \oplus (fSe \cap RcRe) \) can be written in the form \(dr = d' + s \) for some \(d' \in C \) and \(s \in S \). Now \(d't \in C \), because \(t \in T \); and \(st = 0 \), because \(s \in S \) and \(t \in W \). Therefore, \(drt = (d' + s)t = d't \in C \). This shows that \(rt \in T \).

Both \(e \) and \(w \) are elements of \(R \setminus R(T \cap W) \) and

\[
eT \cap wT \subseteq R(T \cap W).
\]

For, the element \(e \) does not belong to \(W \), and \(R(T \cap W) \subseteq W \). On the other side, \(w \) has the property \(0 \neq cw \in fSe \) and \(fSe \cap C = 0 \); thus \(w \) does not belong to \(T \), but, as we have seen above, \(R(T \cap W) \subseteq T \). Therefore, \(eT \cap wT \subseteq T \cap W \subseteq R(T \cap W) \).

As an \(R \)-module,

\[
R/C = Re/C_1 \oplus R(1 - e)/C_2,
\]

and \(Re/C_1 \) is indecomposable. Let \(\mathcal{E} \) be the centralizer of \(Re/C_1 \) and \(\mathcal{W} \) the radical of \(\mathcal{E} \). Then \(R(T \cap W)e/C_1 \) contains \((Re/C_1)\mathcal{W} \), and \(Je + C_1/C_1 \) is contained in the socle of \((Re/C_1)_\mathcal{W} \). Thus we may define for any \(x \in Je \) a \(\mathcal{E} \)-homomorphism \(\psi \) of the form

\[
(Re/C_1)_\mathcal{W} \xrightarrow{\varepsilon} Re/R(T \cap W)e \xrightarrow{\cdot e} Je + C_1/C_1 \xrightarrow{\cdot t} (Re/C_1)_\mathcal{W},
\]

mapping \(e + C_1 \) onto 0 and \(w + C_1 \) onto \(x + C_1 \). Here we used that the elements \(e + R(T \cap W)e \) and \(w + R(T \cap W)e \) are right independent.
Because every \(R\)-homomorphism \(R(1 - e)/C_2 \to Re/C_1 \) maps into \(R(T \cap W)e/C_1 \), and every \(R\)-homomorphism \(Re/C_1 \to R(1 - e)C_2 \) vanishes on \(Je + C_2/C_1 \), we may conclude that the trivial extension of \(\psi \) to \(ReC_1 \oplus R(1 - e)/C_2 \) belongs to the double centralizer of \(Re/C_1 \oplus R(1 - e)/C_2 \). Thus, we find an element \(\rho \in R \) with

\[
\rho e \in C_1, \quad \rho w - x \in C_1 \text{ and } \rho(1 - e) \in C_2.
\]

The first and the last condition together imply that \(\rho \) belongs to \(C_1 \oplus C_2 \subseteq fL \); consequently, the second condition shows that

\[
x \in C_1 + fLw \subseteq fL.
\]

Thus, \(Je \subseteq fL \), and therefore \(Je = fSe \).

This proves (3).

But applying (1) to the opposite ring \(R^* \) of \(R \), we get the equality

\[
(1)^* \quad \delta_i fSe = 1,
\]

and therefore, (3) implies \(\delta_i Je = 1 \). This contradiction proves the first socle condition.

5. The second socle condition. As in the previous sections, we assume that the basis ring \(R \) is a QF-1 ring with left socle \(L \), right socle \(J \), and that \(e \) and \(f \) are primitive idempotents with \(fSe \neq 0 \), where \(S = L \cap J \). The aim of this section is to establish the inequality

\[
\delta_i Le \times \delta_r fJ \leq 2.
\]

First, we are going to show

\[
(1) \quad \delta_i Le \leq 2.
\]

Assume for the contrary that there are three independent minimal left ideals \(A, B \) and \(C \) in \(Re \). Because \(Je \neq 0 \), we may assume that \(A \subseteq Je \).

There is an element \(r \in eRe \setminus W \) with \(Br = C \). If not, then all elements \(r \in eRe \) with \(Br \subseteq C \) or with \(Cr \subseteq B \) belong to \(W \). As a consequence, the image of every \(R\)-homomorphism \(Re/C \oplus R(1 - e) \to Re/B \) is contained in \(We/B \), and the kernel of every \(R\)-homomorphism \(Re/B \to Re/C \oplus R(1 - e) \) contains \(Je + B/B \). Let \(\mathcal{C} \) denote the centralizer of the \(R\)-module \(Re/B \). The radical elements of \(\mathcal{C} \) are induced by elements of \(W \), thus, \(We/B \) contains the radical of \((Re/B)_r \) and \(Je + B/B \) is contained in the socle of \((Re/B)_r \). This shows that exists a \(\mathcal{C}\)-homomorphism \(\psi \) of the form

\[
(Re/B)_r \xrightarrow{\varepsilon} Re/We \longrightarrow Je + B/B \xrightarrow{\iota} (Re/B)_r,
\]
mapping $e + B$ onto an element $a + B$ with $0 \neq a \in A$. The trivial extension of ϕ onto $Re/B \bigoplus Re/C \bigoplus R(1 - e)$ is an element of its double centralizer. Because $Re/B \bigoplus Re/C \bigoplus R(1 - e)$ is a faithful left R-module, we get an element $\rho \in R$ with

$$\rho e - a \in B \text{ and } \rho e \in C.$$

This implies that $a \in B + C$, a contradiction to the independence of A, B and C. Thus, we have shown that there is $r \in eRe\setminus W$ with $Br = C$, and, in particular, the left R-module Re/B is faithful.

Let us consider $T = \{t \in R|Bt \subseteq B\}$. Of course, e belongs to T, whereas r does not belong to T. The radical of T is just $T \cap W$, because if $t \in T \setminus W$, then also t^{-1} belongs to T. The elements of T induce by right multiplication just the endomorphisms of $_{R}(Re/B)$; thus we may define a \cong-homomorphism ψ of the form

$$(Re/B)_\cong \xrightarrow{\cdot} Re/We \longrightarrow Je + B/B \xrightarrow{t} (Re/B)_\cong,$$

mapping $r + B$ onto an element $a + B$ with $0 \neq a \in A$ and $e + B$ onto B. Here we use, that the elements $e + We$ and $r + We$ are independent in $(Re/We)_{\cong}$. The trivial extension of ψ onto $Re/B \bigoplus R(1 - e)$ belongs to its double centralizer, because all morphisms between Re/B and $R(1 - e)$ are induced by elements of W. Thus, we get an element $\rho' \in R$ with

$$\rho'r - a \in B \text{ and } \rho'e \in B.$$

But $r = er$, so a belongs to $Br + B = C + B$, a contradiction. This concludes the proof of (1).

Applying (1) to the opposite ring R^* of R, we get

$$(1^*) \quad \partial_r fJ \leq 2.$$

Thus, it remains to show that $\partial_i Le = 2$ yields $\partial_r fJ = 1$. So let us assume that $\partial_i Le = 2$. Our first aim is to prove

$$(2) \quad fJ \subseteq Le.$$

According to §3, we know that $Je \subseteq Le$, and we have to verify that for every primitive idempotent e' which is orthogonal to e, we have $fJe' = 0$. So let us assume $fJe' \neq 0$. We distinguish two cases.

Case 1. The socle Le of Re contains a minimal left ideal Rc that is not twosided. Thus, R/Rc is a faithful left R-module. Also $fSe \not\subseteq Rc$, because fSe is nonzero and a twosided ideal. Let a be an element of $fSe\setminus Rc$, let b be a nonzero element in fJe'. Let us consider

$$M = (Re \bigoplus Re')/R(a, b).$$
This is an indecomposable left R-module and, according to Morita's criterion, M is either generated or cogenerated by R/Rc.

First, let us show that the image of every morphism $R/Rc \to M$ is contained in $(W \oplus Re')/R(a, b)$. Such a morphism maps $R(1-e)$ into $(W \oplus Re')/R(a, b)$, so it is enough to consider morphisms $Re/Rc \to M$. Thus, let us assume there are given two elements $r_1 \in eRe$ and $r_2 \in eRe'$ such that

$$Re \xrightarrow{(r_1, r_2)} Re \oplus Re'$$

maps c into $R(a, b)$, that is

$$(cr_1, cr_2) = (\lambda a, \lambda b)$$

for some $\lambda \in R$. Because a and b belong to fJ, we may assume that $\lambda \in Rf$. If $u \in J$, then r_1 is not a unit of eRe, because $cr_1 = \lambda a \in J$. Thus, in this case, $r_1 \in W$. If $c \in J$, then $\lambda b = cr_2 = 0$, because $r_2 \in eRe' \subseteq W$. Therefore also $f\lambda b = 0$ and $f\lambda$ is not a unit in fRf; so $\lambda = f\lambda + (1-f)\lambda$ has to belong to W. But this implies that $cr_1 = \lambda a = 0$, because $a \in S$. Again, r_1 is not a unit of eRe and therefore belongs to W. This shows that R/Rc does not generate M.

Secondly, we prove that every morphism $M \to R/Rc$ maps $(a, 0) + R(a, b)$ into 0. We may restrict to morphisms $M \to Re/Rc$, because every morphism $M \to R(1-e)$ maps $(a, 0) + R(a, b)$ into 0 for trivial reasons. Thus we have given two elements $s_1 \in eRe$ and $s_2 \in e'Re$ such that

$$Re \oplus Re' \xrightarrow{(s_1, s_2)} Re$$

maps (a, b) into Re, that is

$$as_1 + bs_2 \in Re.$$

But $b \in J$ and $s_2 \in eRe' \subseteq W$, therefore $bs_2 = 0$ and $as_1 \in Re$. Since as_1 is also the image of $(a, 0)$ under $\begin{pmatrix} s_1 \\ s_2 \end{pmatrix}$, we conclude that $(a, 0)$ is mapped into Re. This shows that M is not cogenerated by R/Rc.

Case 2. The minimal left ideals contained in Re are twosided ideals. In particular, this implies that $Le = Se$. Let a be a nonzero element in fSe, b a nonzero element in fJe', and c an element in $Le \setminus Ra$. Again, we consider the left R-module

$$M = (Re \oplus Re')/R(a, b),$$

but this time we form $M \oplus R(1-e)$. This is a faithful left R-module, and, according to Morita's criterion, has to generate or to cogenerate
the indecomposable R-module Re/Rc.

First, let us show that $M \oplus R(1-e)$ does not generate Re/Rc. Trivially, any morphism $R(1-e) \rightarrow Re/Rc$ maps into We/Rc; thus assume there are elements $r_1 \in eRe$ and $r_2 \in e'eRe$ such that

$$Re \oplus Re' \xrightarrow{(r_1 \quad r_2)} Re$$

maps (a, b) into Rc. Thus, there is $\lambda \in R$ with

$$ar_1 + br_2 = \lambda c.$$

But $b \in J$ and $r_2 \in e'eRe \subseteq W$, thus $ar_1 = \lambda c$. According to our assumption, Ra is a two-sided ideal, and $Ra \cap Rc = 0$, thus $ar_1 = 0$ and r_1 is not a unit in eRe. This shows that $r_1 \in W$. As a consequence, the image of every morphism $M \oplus R(1-e) \rightarrow Re/Rc$ is contained in We/Rc.

Secondly, $M \oplus R(1-e)$ does not cogenerate Re/Rc. It is enough to show that every morphism $Re/Rc \rightarrow M$ and every morphism $Re/Rc \rightarrow R(1-e)$ maps Le/Rc into 0. This is obvious in the second case, because $Le = Se$. Thus, assume there are given elements $s_1 \in eRe$ and $s_2 \in eRe'$ such that

$$Re \xrightarrow{(s_1, s_2)} Re \oplus Re'$$

maps c into $R(a, b)$. That means, we find an element $\mu \in R$ with

$$(cs_1, cs_2) = (\mu a, \mu b).$$

Because Rc is a two-sided ideal and $Rc \cap Ra = 0$, we conclude that $cs_1 = 0$. But this implies that $s_1 \in W$. Trivially, also $s_2 \in W$; thus $Le = Se$ is mapped under (s_1, s_2) into 0.

In Case 1 as well as in Case 2, the assumption $fJe' \neq 0$ for a primitive idempotent e' orthogonal to e, leads to a contradiction. This proves statement (2). Using this assertion, we are able to prove

(3) \[\partial_{e}fJ = 1. \]

We know from (2) that $fJ = fSe$. If $Se = Le$, then

$$\partial_{e}Je \geq \partial_{e}Se = 2,$$

and the first socle condition implies $\partial_{e}fL = 1$. But $fJ = fSe \subseteq fL$, thus also $\partial_{e}fJ = 1$. Therefore, we may assume that Se is a proper submodule of Le. Let c be an element in $Le \setminus Se$. Then $Rc \cap Se = 0$, and Rc is not a two-sided ideal, because otherwise it must intersect Se nontrivial. As a consequence, R/Rc is a faithful left R-module.

Let us assume $\partial_{e}fJ \geq 1$. Then we find elements a and b in $fJ =
such that aR and bR are independent right ideals of R. Let us form the indecomposable left R-module

$$M = (Re \oplus Re)/R(a, b).$$

Morita’s criterion implies again, that R/Rc either generates or cogen-
erates M.

First, the image of every morphism $R/Rc \rightarrow M$ is contained in $(We \oplus Re')/R(a, b)$. Of course, it is enough to consider morphisms

$$Re \xrightarrow{(r_1, r_2)} Re \oplus Re$$

with

$$(cr_1, cr_2) = (\lambda a, \lambda b)$$

for some $\lambda \in R$, where r_1 and r_2 both belong to eRe. But $c \in Se$, whereas $cr_1 = \lambda a \in Se$. This shows that r_1 is not a unit in eRe and thus belongs to W. As a consequence, R/Rc does not generate M.

Secondly, every morphism $M \rightarrow R(1 - e)$ and every morphism $M \rightarrow Re/Rc$ maps $(a, 0) + R(a, b)$ into 0. We only have to consider the latter; thus there are two elements s_1 and s_2 in eRe such that

$$Re \oplus Re \xrightarrow{(s_1, s_2)} Re$$

maps (a, b) into Re. That is,

$$as_1 + bs_2 \in Rc \cap Se = 0.$$

Now the fact, that $aR \cap bR = 0$ implies that both r_1 and r_2 belong to W. Therefore, $Se \oplus Se$ belongs to the kernel of (s_1, s_2); in particular, $(a, 0)$ is mapped into 0. This proves that Re/Rc does not cogenrate M.

The assumption $\delta_f J > 1$ has led to a contradiction. This estab-
lishes statement (3) and completes the proof of the second socle con-
dition.

6. Indecomposable faithful modules. The first application of
the socle conditions gives the solution to a problem raised by D. R.
Floyd ([6], [10]): whether a QF-1 algebra can have many types of
indecomposable finitely generated faithful modules. He conjectured
that, for a given QF-1 algebra, the length of all such modules is
bounded. J. P. Jans [10] proved the conjecture under the assumption
that the algebra has “large kernels”, this is however, a rather tech-
nical condition concerning all indecomposable finitely generated modules.
Here we are going to prove a stronger version of Floyd’s conjecture:
not only is the length of all indecomposable finitely generated faithful
modules of a QF-1 algebra bounded, but there is at most one isomorphism class of such modules. And, proper QF-1 algebras (QF-1 algebras which are not quasi-Frobenius algebras) don’t have any such modules.

Theorem. Let R be a QF-1 algebra with an indecomposable finitely generated faithful module. Then R is Morita equivalent to a local quasi-Frobenius algebra.

Proof. We may assume that R is a basis ring. Also we may assume that there is a primitive idempotent e with $Je \neq 0$ and $\partial_t Le = 1$, where L is the left socle and J the right socle of R. This is a consequence of the second socle condition; for, $L \cap J \neq 0$, so we find primitive idempotents e and f with $f(L \cap J)e \neq 0$, and the second socle condition now implies that either $\partial_t Le = 1$ or $\partial_t fJ = 1$. In the second case, the opposite ring R^* of R satisfies the assumption. But an algebra R has an indecomposable finitely generated faithful modules if and only if R^* has one; also the opposite ring of a local quasi-Frobenius algebra is again a local quasi-Frobenius algebra.

Let M be an indecomposable finitely generated faithful left R-module. Let C be its centralizer and \mathcal{W} the radical of C. First, let us show that there is an element $m = em$ in $M \setminus M^e$ such that $Sem \neq 0$, where $S = L \cap J$. The elements of the form ex and $(1 - e)x$ generate the module M additively, so we may take a minimal generating set $\{x_i : i \in I\}$ of the C-module M^e, consisting of elements of the form $x_i = ex_i$ or $x_i = (1 - e)x_i$. The minimality implies that no element x_i belongs to the radical M^e. Every element of M has the form $\sum x_i\mathcal{P}_i$, with $\mathcal{P}_i \in C$. Therefore, if we assume $Sex_i = 0$ for all $i \in I$, we get

$$Se(\sum x_i\mathcal{P}_i) = \sum Sex_i\mathcal{P}_i = 0.$$

But because M is faithful, we have $SeM \neq 0$. This contradiction implies the existence of some x_i with $Sex_i \neq 0$. According to our construction, we have either $x_i = ex_i$ or $x_i = (1 - e)x_i$. Since the latter is impossible, the element $m = x_i$ satisfies all requirements.

The submodule Rm of M is isomorphic to Re. For, the obvious homomorphism $Re \rightarrow Rem = Rm$ has trivial kernel; otherwise, the kernel would contain Le, since we have $\partial_t Le = 1$. But m satisfies $Sem \neq 0$, therefore Se is not contained in the kernel.

Now, let f be a primitive idempotent with $fS \neq 0$. Because M is faithful, we also have $fSM \neq 0$. The submodule SM of M is contained in the socle $\text{Soc}_R M$ of M, so we have $f \cdot \text{Soc}_R M \neq 0$. It is easy to see that $f \cdot \text{Soc}_R M$ is a C-submodule of M^e, thus we have
Let $s = fs$ be a nonzero element of $f \cdot \text{Soc}_R M \cap \text{Soc}_R M$. We may define a \mathcal{E}-homomorphism ψ of the form

$$\mathcal{E} \xrightarrow{\psi} M/\mathcal{E} \xrightarrow{t} \text{Soc}_R M \xrightarrow{t} M,$$

mapping m onto s. The \mathcal{E}-homomorphism ψ belongs to the double centralizer of M, and is induced by multiplication by some $\rho \in R$, since R is QF-1. Thus, we have $s = \rho m$, that is $s \in Rm$. But s also belongs to $\text{Soc}_R M$, so

$$s \in Rm \cap \text{Soc}_R M = \text{Soc}_R M.$$

Using the fact that $s = fs$ and using the isomorphism of Rm and Re, we see that $fSe \neq 0$. We therefore have proved that a primitive idempotent f with $fS \neq 0$ also satisfies $fSe \neq 0$. If $1 = \sum f_i$, where the f_i's are primitive and orthogonal, then there is only one of the f_i's with $f_iSe \neq 0$, since $\partial_i Se = 1$ and R is a basis ring. For this idempotent, we have $f_i S \neq 0$, whereas $f_j S = 0$ for $j \neq i$. As a consequence, $S = f_i S$. In the following, we will denote this f_i simply by f.

Using again the second socle condition, we conclude that $\partial_i fS \leq 2$. We distinguish two cases.

Case 1. There is a primitive idempotent e with $fS = fSe$, so also $fS = Se$. According to the first socle condition, either $\partial_i fL = 1$ or $\partial_i Je = 1$, a fortiori we have either $fL = fS$ or $Je = Se$.

If we assume $fL = fS$, then we have

$$L = fL = fS = Se \subseteq Re,$$

where we use that $S = fS$ implies $L = fL$.

Similar, if we assume $Je = Se$, we have

$$J = Je = Se = fS \subseteq fR,$$

where we use that $S = fS$ implies $J = Je$.

In the first case, the whole left socle is contained in Re, thus $R = Re$; in the second case, the whole right socle is contained in fR, thus $R = fR$. Always we conclude that R is a local ring.

Case 2. There are two primitive idempotents e_i and e_2 with $fS = fSe_i \oplus fSe_2$, and so also $fS = Se_i \oplus Se_2$. Since in this case $\partial_i fL > 1$, the first socle condition implies $\partial_i Je_i = 1$, for $i = 1, 2$. In particular, we have $Je_i = Se_i$. It follows from $S = Se_1 \oplus Se_2$ that $J = Je_1 \oplus Je_2$, thus
Again, we conclude from the fact that the whole right socle is contained in \(fR \) that \(R = fR \). Consequently, \(R \) is a local ring.

It is known that a local \(QF-1 \) algebra is a quasi-Frobenius algebra ([2], [3]), but this is also a consequence of the second socle condition. For, in this case, it shows that either the left socle is simple or the right socle is simple.

7. \(QF-1 \) algebras with radical square zero. As a second application of the socle conditions we give an internal characterization of \(QF-1 \) algebras with radical square zero. This answers partly the question of R. M. Thrall [15] to determine the class of \(QF-1 \) algebras “in the language of ideal theory”. Until now, only for two other classes of algebras a characterization of those algebras which are \(QF-1 \) seems to be known: for serial (or “generalized uniserial”) algebras [7] and for algebras which are direct sums of full matrix rings over local rings ([2], [3]). In what follows, let us assume that \(R \) is a finite dimensional algebra with the radical \(W \) and that \(W^2 = 0 \).

The algebra \(R \) is said to be of local-colocal representation type (or of “cyclic-cocyclic” representation type) if every finitely generated module is either local or colocal (a module is colocal if its socle is a minimal submodule). H. Tachikawa [13] has characterized these algebras. Under the assumption \(W^2 = 0 \) we get that \(R \) is of local-colocal representation type if and only if for every pair \(e, f \) of primitive idempotents with \(fW e \neq 0 \), we have

\[
\partial_e W e \times \partial_f W f \leq 2,
\]

and that, in this case, every indecomposable module is of length \(\leq 3 \) and either simple, or projective, or injective. Now let us again denote by \(L \) the left socle and by \(J \) the right socle of \(R \). The assumption \(W^2 = 0 \) implies

\[
W \subseteq L \cap J.
\]

Thus, if \(R \) satisfies the second socle condition

(2) for primitive idempotents \(e \) and \(f \) with \(f(L \cap J) \neq 0 \) we have

\[
\partial_e L e \times \partial_f J f \leq 2,
\]

then \(R \) is of local-colocal representation type.

In the theory of rings, certain double centralizers are of particular interest. If \(M \) is an \(R \)-module, let us denote by \(EM \) the injective envelop of \(M \). The double centralizer of the left module \(E_k R \) is called the complete ring of left quotients, and \(R \) is said to coincide with
its complete ring of left quotients if $E_R R$ is balanced. Similarly, R is its complete ring of right quotients if the right module ER_R is balanced.

With these definitions we can formulate the theorem that characterizes the QF^*-algebras with $W^2 = 0$. Besides the second socle condition we will also need the other two conditions

1) for primitive idempotents e and f with $f(L \cap J)e \neq 0$, we have either

$$\delta_R Je = 1 \text{ or } \delta_R fL = 1,$$

2) for every primitive idempotent e with $\delta e = 2$, we have

$$Je \subseteq Le,$$

and the condition dual to (3), namely

(3*) for every primitive idempotent f with $\delta f = 2$, we have

$$fL \subseteq fJ.$$

It should be noted that the conditions (1) and (2) are self-dual.

THEOREM. Let R be a finite dimensional algebra with the radical W. Assume $W^2 = 0$. Then the following conditions are equivalent:

(i) R is a QF^* algebra;

(ii) R satisfies (1), (2), (3) and (3*);

(iii) R is of local-colocal representation type and coincides both with its complete ring of left quotients and its complete ring of right quotients.

Proof. The main theorem of this paper shows that (i) implies (ii). So let us assume (ii). As we have seen above, R is of local-colocal representation type. If we prove that R coincides with its complete ring of left quotients, then the same result holds for the opposite ring of R and R also coincide with its complete ring of right quotients. It is well-known that R coincides with its complete ring of left quotients if and only if $E_R R/ R$ is cogenerated by $E_R R$. The assumption $W^2 = 0$ implies that $E_R R$ is semisimple. Thus, we have to show that $E_R R/ R$ is cogenerated by R. Equivalently, we have to show that for every primitive idempotent e with $e(E_R R/ R) \neq 0$, we have $eL \neq 0$.

So let us assume that e is a primitive idempotent with $e(E_R R/ R) \neq 0$. If $1 = \sum f_i$, where the f_i's are primitive and orthogonal idempotents, then $E_R R/ R = \bigoplus E_R f_i/ R f_i$.

Therefore we find a primitive idempotent f with
We want to show \(e \in J \). If \(Rf \) is a minimal left ideal, then \(Rf \) must be isomorphic to a proper submodule of \(Re \), thus \(fW \neq 0 \). Now \(fL \) contains both \(f \) and \(fW \), thus \(\partial_xfL > 1 \). So the socle condition (1) yields \(\partial_xJe = 1 \). Since \(We \neq 0 \), we conclude \(e \in J \). Now let us consider the case where \(Wf \neq 0 \). Because of (2) we have \(\partial_xWf \leq 2 \), and if \(\partial_xWf = 2 \) then \(ERf = Rf/A \oplus Rf/B \) where \(A \) and \(B \) are minimal left ideals. So, in the case \(\partial_xWf = 2 \), we may assume \(e = f \). But \(\partial_xWf = 2 \) has, according to (3), the consequence \(Jf \subseteq Lf \), thus \(e = f \in J \). Finally, in the case \(\partial_xWf = 1 \) take a primitive idempotent \(f' \) with \(f'Wf \neq 0 \). The injective envelop \(ERf \) can be considered as an amalgamation \(Rf \oplus Re/R(\alpha, b) \) with elements \(\alpha \in f'Wf \), \(b \in f'W \). In particular, we have \(\partial_xf'L > 1 \). This together with \(f'W \neq 0 \) yields according to (1) that \(\partial_xJe = 1 \), thus \(e \in J \). But \(e \in J \), obviously, implies \(eW \neq 0 \) and thus \(eL \neq 0 \). This concludes the proof \((ii) \rightarrow (iii) \).

It remains to show that \((iii) \) implies \((i) \). First, it is obvious that we may assume that \(R \) is a basis ring since both assertions \((iii) \) and \((i) \) are Morita-invariant. Also, we may restrict to rings which are twosided-indecomposable, i.e., rings which cannot be written as the direct sum of two proper twosided ideals. To avoid trivial cases we further assume that \(R \) is not a division ring. Thus, in particular, if \(f \) is a primitive idempotent with \(Wf = 0 \) we have \(fW \neq 0 \).

We assume that \(R \) is of local-colocal representation type. So let us mention some consequences of Tachikawa's characterization which we will need in the sequel. If \(e \) is a primitive idempotent, then \(\partial_xRe \leq 3 \). If \(\partial_xRe = 3 \), and \(A \) is a minimal left ideal contained in \(Re \), then \(Re/A \) is indecomposable and not projective, thus injective; as a consequence, \(ERe = Re/A \oplus Re/B \) where \(A \) and \(B \) are different minimal left ideals in \(Re \). If \(\partial_xRe = 2 \), and we assume that \(Re \) is not injective, let \(f \) be a primitive idempotent with \(fW \neq 0 \). Then \(\partial_xfW = 2 \) and we find right independent elements \(\alpha \in fW \) and \(b \in fW' \), where \(e' \) is a primitive idempotent not necessarily distinct from \(e \). Since \((Re \oplus Re')/R(\alpha, b) \) is indecomposable and not projective, it has to be the injective envelop of \(ERe \).

Let us show that, given two primitive idempotents \(e \) and \(f \) with \(Wf = 0 \) and \(fW \neq 0 \), we may conclude that \(Re \) is injective. Because \(Wf = 0 \), the simple right module \(fR/fW \) does not occur as a submodule of \(W_R \), and, since \(fW \neq 0 \), \(fR/fW \) is also not projective. Thus, \(fR/fW \) does not occur as a submodule of the right socle of \(R \). Again using the result that a ring \(R \) coincides with its complete ring of right quotients if and only if \(ER_R/R_R \) is cogenerated by \(ER_R \), we see that \(fR/fW \) does not occur as a submodule of \(ER_R/R_R \). Now \(\partial_xRe = 2 \). For, otherwise \(\partial_xRe = 3 \) and we find left independent ele-
ments \(a \in f We\) and \(b \in f' We\), with \(f'\) a primitive idempotent not necessarily distinct from \(f\). Then \((fR \oplus f'R)/(a, b)R\) is injective and, in fact, the injective envelop of \(f' R\). Thus \(Ef' R/f' R \simeq fR/f W\) would occur as a submodule of \(ER_R/R_R\). Also, \(\partial_r f W = 1\). For, otherwise \(\partial_r f R = 3\) and \(Ef R = f R/A \oplus f R/B\) for some minimal right ideals \(A\) and \(B\). But this implies that \(Ef R/f R \simeq fR/f W\) occurs as a submodule of \(ER_R/R_R\). This shows that \(Re\) is injective.

Since \(W^2 = 0\), we know that \(E_R R/R_R\) is semisimple. Now a simple module is called square-free if two isomorphic submodules always coincide, or equivalently, if the homogenous components are of length 1. We claim that \(E_R R/R_R\) is square-free. In order to prove this, we will embed \(E_R R/R_R\) into \(R R/R W\), since for a basis ring \(R\) the module \(R R/R W\) is obviously square-free. So let \(1 = \Sigma e_i\), where the \(e_i\)'s are primitive and orthogonal idempotents. If \(\partial_i Re_i = 1\), then \(We_i = 0\) implies that there is some \(j \neq i\) with \(e_i We_j \neq 0\). Then, as we have seen above, \(Re_j\) is injective. Thus \(Re_j\) is the injective hull of \(Re_i\) and

\[
(*) \quad ERe_i/Re_i \oplus ERe_j/Re_j \simeq Re_j/We_j \oplus 0 = Re_j/We_j.
\]

If \(\sigma_i Re_i = 2\) and \(Re_i\) is not injective, then for a primitive idempotent \(f\) with \(f W_i \neq 0\) we have \(\partial_i f W = 2\). Now in the case where \(f W = f We_i\), we have

\[
(**) \quad ERe_i/Re_i \simeq Re_i/We_i,
\]

whereas otherwise we find \(j \neq i\) with \(f W = f W_i \oplus f We_j\) and since \(ERe_i/Re_i \simeq Re_j/We_j\) and \(ERe_j/Re_j \simeq Re_i/We_i\), we have

\[
(***) \quad ERe_i/Re_i \oplus ERe_j/Re_j \simeq Re_j/We_i \oplus Re_i/We_j.
\]

Finally, for \(\partial_i Re_i = 3\) we have \(ERe_i = Re_i/A_i \oplus Re_i/B_i\) for minimal left ideals \(A_i\) and \(B_i\), thus we get again \((***)\). But the three cases \((*)\), \((**)\) and \((***)\) together define the embedding of \(E_R R/R_R \simeq \oplus ERe_i/Re_i\) into \(\oplus Re_i/We_i \simeq R R/ R W\).

In [14], Corollary 3.4, Tachikawa has shown that for a ring \(R\) for which \(E_R R/R_R\) is semisimple and square-free with \(E_R R\) also every module \(M\) satisfying \(R R \subseteq M \subseteq E_R R\) is balanced. Since we assume that \(R\) coincides with its complete ring of left quotients and since we have proved that \(E_R R/R_R\) is semisimple and square-free, we may use this result.

Let us call two left \(R\)-modules \(M\) and \(N\) equivalent if there are decompositions \(M = \oplus M_i\) and \(N = \oplus N_j\) such that for every \(i\) there is some \(j\), and conversely, for every \(j\) there is some \(i\), with \(M_i \approx N_j\). If \(M\) and \(N\) are equivalent, then \(M\) is balanced if and only if \(N\) is balanced [9]. An \(R\)-module \(X\) is called minimal faithful, if \(X\) is
faithful but no proper direct summand of X is faithful. We want to show that every finitely generated, minimal faithful left R-module is equivalent to a module M with $\oplus R \subseteq M \subseteq E_R R$.

Let X be a finitely generated, minimal faithful left R-module. Let $X = \bigoplus X_j$ be a decomposition of X into indecomposable modules. Let $1 = \sum e_i$, where the e_i's are primitive and orthogonal idempotents. For every i, we will construct a module M_i with $R e_i \subseteq M_i \subseteq E R e_i$ such that M_i is either isomorphic to one of the modules X_j or to the direct sum $X_j \oplus X_j$ of two such modules. Since $M = \bigoplus M_i$ satisfies $\oplus R \subseteq M \subseteq E_R R$, we see that M is faithful. Thus we may conclude that every X_j was used in the formation of some M_i, and thus is a direct summand of M in the given decomposition; for otherwise we would get a contradiction to the minimality of X. As a consequence, X and M are equivalent.

So, let us construct for a given i the module M_i. If $\delta_i, R e_i = 2$, we find some j with $W e_i X_j \neq 0$ since X is faithful. As a consequence, we may embed $R e_i$ into X_j. But X_j is indecomposable, thus either isomorphic to $R e_i$ or to $E R e_i$. So either $M_i = R e_i$ or $M_i = E R e_i$ fulfills the requirements. If $\delta_i, R e_i = 1$, then we find some i' with $e_i W e_{i'} \neq 0$. As we have seen above, $R e_{i'}$ is injective and one of the modules X_j is isomorphic to $R e_{i'}$. So let us take $M_i = E R e_i (\cong R e_{i'} \cong X_j)$. Finally, for $\delta_i, R e_i = 3$, we look again for j with $W e_i X_j \neq 0$. If X_j is of length, 3, then X_j has to be projective and isomorphic to $R e_i$. In this case, take $M_i = R e_i$. If every module X_j with $W e_i X_j \neq 0$ is of length 2, then all these modules are injective, and either $R e_i$ is embeddable in $X_j \oplus X_i$ for some i, or else we find two different i and i' with $R e_i$ embeddable in $X_i \oplus X_j$. This means that we take $M_i = E R e_i$. So we have shown that any finitely generated, minimal faithful left R-module is equivalent to a module M with $\oplus R \subseteq M \subseteq E_R R$ and thus is balanced.

To complete the proof, take an arbitrary finitely generated faithful left R-module Y. Let

$$Y = X \oplus Y_1 \oplus \cdots \oplus Y_n,$$

where X is minimal faithful and the modules Y_i are indecomposable. We know that X is balanced. In order to apply Morita's criterion, we have to show that every module Y_i is either generated or cogenerated by X. But it can easily be verified that every projective module is cogenerated by X, whereas every injective module, and also every simple, but not projective, module is generated by X. This proves that R is QF-1.

8. Remarks and examples. The following remarks try to shed some light on the possibility to improve the socle conditions. It will
be shown that the three conditions—or rather the four conditions (1), (2), (3) and (3*)—are independent.

(a) It should be noted that condition (1) cannot be brought in a form similar to (2); this follows from the fact that there are QF-1 rings with $\partial J e > 2$. Indeed, a serial (or “generalized uniserial”) algebra with the Kupisch series

$$1, 2, 3, 3, 3$$

has a primitive idempotent e with $\partial J e = 3$ (namely $e = e_3$), and also a primitive idempotent f with $\partial J e = 3$ (namely $f = e_1$). On the other hand, it follows from K. R. Fuller’s characterization of serial QF-1 rings [7], that this algebra is QF-1. Similarly, for every natural n we may consider a serial algebra with the Kupisch series

$$1, 2, \cdots, n - 1, n, n, \cdots n$$

with n primitive and orthogonal idempotents e_i such that $\partial J e_i = n$. Such an algebra is QF-1 and has idempotents e and f with $\partial J e = n$ and $\partial J f = n$.

(b) In order to show that the different socle conditions studied in this paper are independent, let us consider the following examples.

First, any QF-3 algebra satisfies the conditions (2), (3) and (3*). The ring of all upper-triangular 2×2-matrices over a field is a QF-3 algebra, but does not satisfy condition (1).

Then, let us start with a field and a subfield of index 2, say with the complex numbers C and the reells R, and consider the ring R_0 of all triangular matrices with entries in C or in R according to

$$\begin{pmatrix} C & C & C \\ 0 & R & R \\ 0 & 0 & R \end{pmatrix}.$$

Let W_0 be its radical, and define R as $R = R_0/ W_0$. It is easy to verify that R satisfies the conditions (1), (2) and (3), but not (3*). Let us remark that it is also an example of an algebra of local-colocal representation type which coincides with its complete ring of left quotients but not with the complete ring of right quotients.

Finally, let R be the subalgebra of the ring of all 8×8-matrices over some field, generated by the elements

$$e_1 = a_{11} + a_{88}, e_2 = a_{22} + a_{77}, e_3 = a_{33} + a_{66}, e_4 = a_{44} + a_{55},$$

$$a_{21}, a_{21}, a_{41}, a_{65}, a_{66}, a_{87}.$$

This algebra satisfies the condition (1), (3) and (3*), but not condition (2). Also, this is the example of an algebra R which is not of local-
colocal representation type but which coincides both with its complete ring of left quotients as well as its complete ring of right quotients. A simple example for the latter is of course any local algebra with radical W and $W^2 = 0$ which has two different minimal left ideals which are twosided ideals.

Since all examples mentioned here are algebras with $W^2 = 0$, we see that the conditions in the theorem of §7 are independent.

(c) We have shown that the three socle conditions characterize the QF-1 algebras with radical square zero. However, if we drop the assumption on the radical, the assertion does not remain valid. In fact, a serial algebra with the Kupisch series

$$1, 2, 3, 3$$

satisfies all the properties (1), (2), (3) and (3*), but is, according to [7], not a QF-1 algebra.

On the other hand, for algebras which are direct sums of full matrix rings over local rings, even the socle condition (2) alone characterizes those which are QF-1.

(d) It is well-known that for a quasi-Frobenius ring the left length and the right length coincide. Also, the previously published examples of QF-1 algebras were either serial or had the property that every simple module was one dimensional over the ground field; thus, again, the left and the right length of the corresponding basis ring had to coincide. Using the characterization of QF-1 algebra with radical square zero, we show that in general the left length and the right length of a basis QF-1 algebra need not to be equal.

Let R_o be the ring of all matrices with entries in C and R according to

$$
\begin{pmatrix}
C & C & C & C \\
0 & C & C & C \\
0 & 0 & R & R \\
0 & 0 & 0 & R
\end{pmatrix}
$$

and let W_o be the radical of R_o. R_o is an algebra over R and $R = R_o / W_o$ satisfies all the conditions (1), (2), (3) and (3*), thus R is a QF-1 ring. But we have $\delta_i R = 7$, whereas $\delta_3 R = 8$.

Of course, the exceptional rings studies in [4] and [5] are also QF-1 rings (but not algebras) for which left length and right length does not coincide.

REFERENCES

Received September 24, 1971.

MATHEMATISCHES INSTITUT
 DER UNIVERSITÄT
 TÜBINGEN, GERMANY
 AND
 CARLETON UNIVERSITY
 OTTAWA, CANADA