Teilbarkeitsregeln in b-adischen Stellenwertsystemen und die Kongruenzrelation

Ein Weg zur Behandlung von Teilbarkeitsregeln in b-adischen Stellenwertsystemen im Unterricht.

VON FRIEDHELM PADBERG

1. Einleitung

Dieser Aufsatzt will einen übersichtlichen und einfachen Weg aufzeigen, wie man mit Hilfe der Kongruenzrelation Teilbarkeitsregeln für Stellenwertsysteme mit beliebigen Basen b > 1 gewinnen kann. Dabei ist der gewählte Ansatz über die Kongruenzrelation selbstverständlich auch im Dezimalsystem brauchbar und - wie mir scheint - dem üblichen Verfahren überlegen, bei dem man zunächst Teilbarkeitsregeln für die Zweier- und Fünferpotenzen ableitet, dann auf eine andere Art und Weise Teilbarkeitsregeln für die Zahlen 3 und 9 aufstellt und zur eventuellen Ableitung von Teilbarkeitsregeln für 7, 11 und 13 schon wieder einen neuen Ansatz - etwa über die Marchenzahl 1001 - wählen muß. Die Aufstellung von Teilbarkeitsregeln in einem nichtdezimalen Stellenwertsystem erfordert gar schon wieder völlig neue Überlegungen. Demgegenüber bietet der im folgenden zu erläuternden Weg über die Kongruenzrelation folgende Vorteile:

1. Die Abhängigkeit der Teilbarkeitsregeln von der Basis des jeweiligen Stellenwertsystems ist auf Grund der Ableitung evident. Damit genügt dieser An-
satz besonders gut der eingangs zitierten KMK-Formulierung.

4. Der folgende Weg erlaubt weiterhin die Verein- fachung bekannter Teilbarkeitsregeln (durch Reduzierung des nötigen Rechenaufwandes, wobei die Re- geln gleichzeitig aber u. U. etwas weniger griffig werden) und ermöglicht auch die Aufdeckung der Zu- sammenhänge zwischen verschiedenen Teilbarkeits- regeln für einen festen Teiler $d
eq 0$.

5. Der Weg über die Kongruenzrelation gestattet außerdem nicht nur eine Grobklassifizierung der na- türlichen Zahlen in teilbar – nicht teilbar, sondern im 2. Fall darüber hinaus auch eine genaue Bestimmung des Restes.

Im folgenden sollen die mathematischen Grundlagen dieses Weges beschrieben werden. Bei seiner Um- setzung in die Schulpraxis sollten die beiden folgenden Punkte zweckmäßigerverweise beachtet werden:

2. Die Symbolik $a \equiv b \pmod{d}$ wird man zweck- mäßigerweise im Unterricht nicht a ist kongruent b modulo d lesen, sondern a ist restgleich b bezüglich d.

2. Voraussetzungen

Neben der Definition der Kongruenzrelation werden im folgenden für die Ableitung der Teilbarkeits- regeln nur zwei einfache Sätze über die Addition und Multiplikation von Kongruenzen benötigt, die man schon bei einer saubereren Einführung der Restklassenaddition und -multiplikation gebraucht und die völlig analog auch bei der vertrauten Gleichheitsrelation gelten.

Definition: Seien $a, b \in \mathbb{Z}$, $d \in \mathbb{N}$, $a \equiv b \pmod{d}$ gilt genau dann, wenn a und b bei Division durch d derselben Rest lassen.

Diese Definition läßt den Zusammenhang zwischen Kongruenzrelation und Restklassenbegriff deutlich werden, meist handlicher – so auch für den Beweis der folgenden beiden Sätze – ist jedoch die folgende – leicht als äquivalent nachzuweisende – Kennezeichnung der Kongruenz modulo d:

Satz 1: $a \equiv b \pmod{d}$ genau dann, wenn $d \mid (a - b)$.

Durch Rückgriff auf diesen Satz und auf einfache Eigenschaften der Teilbarkeitsrelation lassen sich bekanntlich die folgenden Sätze über die Addition und Multiplikation von Kongruenzen leicht beweisen:

Satz 2: Wenn $a \equiv b \pmod{d}$ und $c \equiv e \pmod{d}$, dann gilt: $a + c \equiv b + e \pmod{d}$.

Satz 3: Wenn $a \equiv b \pmod{d}$ und $c \equiv e \pmod{d}$, dann gilt: $a \cdot c \equiv b \cdot e \pmod{d}$.

Auf dieser Grundlage läßt sich die im nachstehenden Satz formulierte Kongruenz modulo d, die die wesentliche Grundlage für die im folgenden abzuleitenden Teilbarkeitsregeln bildet, unmittelbar zeigen:

Satz 4: Wenn $b \equiv r_i \pmod{d}$ für $i = 0, 1, \ldots, n$, dann gilt: $\sum_{i=0}^{n} q_i b_i \equiv \sum_{i=0}^{n} q_i r_i \pmod{d}$.

3. Teilbarkeitsregeln

Hat also die Zahl a in einem Stellenwertsystem mit der Basis $b \geq 1$ die Darstellung

$$a = \sum_{i=0}^{n} q_i b_i$$

dann folgt nach Satz 4:
\[\sum_{i=0}^{n} q_i b^i \equiv \sum_{i=0}^{n} q_i r_i \pmod{d}. \]

Da \(a' \) wird besonders klein, wenn wir als \(t_i \) die absolut kleinste Zahl wählen, die die Kongruenz \(b^i \equiv r_i \pmod{d} \) erfüllt, auch aber bei Division durch \(d \neq 0 \) nach Definition denselben Rest lassen, kann man an \(a' \) die Teilbarkeitsfrage i. a. wesentlich leichter entscheiden. Dies ist der Grundgedanke der im folgenden abgeleiteten Teilbarkeitsregeln.

Man erkennt hieran schon, daß dieser Ansatz es erlaubt, für beliebige Teiler \(d \neq 0 \) Teilbarkeitsregel herzuleiten, und zwar sogar für einen festen Teiler \(d \neq 0 \) verschiedene Teilbarkeitsregeln, je nachdem welche Lösungen der Kongruenz \(b^i \equiv r_i \pmod{d} \) wir auswählen.

Aus Gründen der Arbeitsökonomie werden wir im folgenden unser Augenmerk auf besonders einfache und übersichtliche Sonderfälle richten:

Fall 1: \(b = 0 \pmod{d} \) für ein \(i \geq 1 \) (3.1. Endstellenregeln)

Fall 2: \(b = 1 \pmod{d} \) für ein \(i \geq 1 \) (3.2. Quersummenregeln)

Fall 3: \(b = -1 \pmod{d} \) für ein \(i \geq 1 \) (3.3. alternierende Quersummenregeln)

3.1. Endstellenregeln

3.1. Der einfachste Fall liegt vor, wenn für zu untersuchende Teiler \(d \) bezüglich der Basis \(b \) unseres Stellenwertsystems \(b = 0 \pmod{d} \) gilt. Dann gilt nach Satz 2 auch \(b^i = 0 \pmod{d} \) für alle \(i \geq 1 \). In diesem Sonderfall ist \(a' = q_0 \) (denn wegen \(b^i = 1 \) kann man hier und im folgenden \(r_i = 1 \) setzen), und man kann die Teilbarkeit von \(a \) durch \(d \) schon an der letzten Stelle von \(a \) (nämlich an \(q_0 \)) ablesen.

\(b = 0 \pmod{d} \) gilt genau dann, wenn \(d \mid b \), wenn also \(d \in T_b \) (\(T_b \) sei die Abkürzung für die Menge der Teiler von \(b \)). Man erhält als Regel (für alle Zahlen \(a \), dargestellt im Stellenwertsystem mit der Basis \(b > 1 \); diese Bedingung wird bei den folgenden Regelformulierungen nicht mehr ausdrücklich erwähnt):

Eine Zahl \(a \) ist genau dann durch ein \(d \) aus \(T_b \) teilbar, wenn die letzte Stelle des Zahlwortes durch \(d \) teilbar ist.

Beispiele:

1) Für \(b = 10 \) gilt \(T_{10} = \{1, 2, 5, 10\} \). Wir können also obige Teilbarkeitsregel im Dezimalsystem auf die drei Teiler 2, 5 und 10 anwenden.

2) Für \(b = 12 \) gilt \(T_{12} = \{1, 2, 3, 4, 6, 12\} \). Im Duodezimalsystem können wir diese Regel sogar bei den fünf Teilern 2, 3, 4, 6 und 12 anwenden.

(Werden Zahlworte hier und im folgenden in Zeichenreihe, angeschierte, so wird hierbei durchgängig der Arzweheit halber das Dezimalsystem benutzt.)

3) Für \(b = 5 \) gilt \(T_5 = \{1, 5\} \). Obige sehr einfache Teilbarkeitsregel können folglich bei dieser Basis nur für den einen Teiler 5, allgemein bei einer Primzahlbasis \(p \) nur für den einen Teiler \(p \) anwenden. Man erkennt an diesen Beispielen schon, daß es in der Eignung der verschiedenen Basen für Teilbarkeitsuntersuchungen starke Unterschiede gibt.

3.1.2. Gilt \(b^2 = 0 \pmod{d} \), so folgt nach Satz 3:

\(\forall \rightarrow 0 \pmod{d} \) für alle \(i > 2 \).

Folglich gilt die Kongruenz:

\[\sum_{i=0}^{n} q_i b^i = q_1 b + q_0 \pmod{d}. \]

\(b^2 = 0 \pmod{d} \) gilt genau dann, wenn \(d \mid b^2 \), wenn also \(d \in T_{b^2} \). Wir erhalten als Regel:

Eine Zahl \(a \) ist genau dann durch ein \(d \) aus \(T_{b^2} \) teilbar, wenn \(q_1 b + q_0 \) durch \(d \) teilbar ist.

Da aus \(b = 0 \pmod{d} \) folgt \(b^2 = 0 \pmod{d} \), bildet \(T_b \) eine Teilmenge von \(T_{b^2} \). Wir erhalten so für die Elemente von \(T_b \) zwei verschiedene Teilbarkeitsregeln; allerdings ist die in 3.1. angegebene Regel für sie wegen ihrer größeren Einfachheit vorzuziehen. Ferner kann man die Regel für einige Teiler \(d \) noch weiter vereinfachen, indem man \(b \) nicht durch \(b \), sondern durch den absolut kleinsten Rest \(d \) ersetzt. (Beispiel: \(b = 10, d = 4 \). Es gilt: \(10 = 2 \pmod{4} \).

Folglich ergibt sich die Vereinfachung obiger Teilbarkeitsregel: Die (dezimale geschriebene) Zahl \(a \) ist genau dann durch \(d \) teilbar, wenn \(q_1 \cdot 2 + q_0 \) durch \(d \) teilbar ist.)

So liefert 3.1.2 beispielsweise Teilbarkeitsregeln für:

a) im Dezimalsystem \((b = 10): 2, 4, 5, 10, 20, 25, 50, 100 \) oder, wenn wir uns auf Primzahlen und Primzahlpotenzen beschränken, was ja ausreicht, \(2, 2^2, 5, 5^1 \).

b) im Duodezimalsystem \((b = 12): 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144 \).

c) in einem Stellenwertsystem mit einer Primzahl \(p \) als Basis: \(p, p^2 \).

3.1.3. Gilt \(b^3 = 0 \pmod{d} \), so ergibt sich nach Satz 3 \(b^3 \equiv 0 \pmod{d} \) für \(i > 3 \).

Daher erhalten wir:

\[\sum_{i=0}^{n} q_i b^i = q_1 b^2 + q_1 b + q_0 \pmod{d}. \]

\(b^3 = 0 \pmod{d} \) gilt genau dann, wenn \(d \mid b^3 \), wenn also \(d \in T_{b^3} \). Wir erhalten als Regel:
Eine Zahl a ist genau dann durch ein Element d der Menge T_{b^2-1} teilbar, wenn d die b-adische Quersumme 2. Ordnung von a teilt.

Da aus $b = 1$ (mod d) $b^i \equiv 1$ (mod d) folgt, bildet T_{b^i} eine Teilmenge von T_{b^2-1}. Für die Elemente von T_{b^i} wird man die Regel 3.2.1 benutzen und nur für die Elemente von $T_{b^2-1} \setminus T_{b^i}$ die Regel 3.2.2. Für gewisse Teiler d ist aber auch hier eine weitere Vereinfachung der Regel (wie unter 3.1.3 erwähnt) möglich.

3.2.2. liefert beispielsweise Teilbarkeitsregeln für:

a) $(3, 9), 11, 33, 99$ im Dezimalsystem,
b) $(11), 13, 143$ im Duodezimalsystem,
c) $(2, 3), 4, (6), 8, 12, 16, 24, 48$ im Stellenwertsystem mit der Basis $b = 7$.

3.2.3. Gilt $b^i = 1$ (mod d), so erhält man in entsprechender Verallgemeinerung der bei 3.2.2 besprochenen Verhältnisse die Regel:

Eine Zahl a ist genau dann durch ein Element d der Menge T_{b^2-1} teilbar, wenn d die b-adische Quersumme 3. Ordnung von a teilt.

Über weitere Vereinfachungsmöglichkeiten gilt das im vorigen Abschnitt besprochene.

3.2.4 Eine Verallgemeinerung für höhere Potenzen der Basis b ist leicht möglich.

3.3 Alternierende Quersummenregeln

Zum Abschluß des Aufsatzes wollen wir uns mit dem 3. Sonderfall $b = 1$ (mod d) für $i \geq 1$ beschäftigen und so die alternierenden Quersummenregeln ableiten.

3.3.1. Gilt $b = 1$ (mod d), so $b^i \equiv 1$ (mod d), $b^{i-1} = -1$ (mod d) für $i \geq 1$. Es ergibt sich die Kongruenz:

$$\sum_{i=0}^{n} q_i b^{i} \equiv \sum_{i=0}^{n} (-1)^i q_i (\text{mod } d), \quad \sum_{i=0}^{n} (-1)^i q_i$$

bezeichnet man als alternierende b-adische Quersumme. $b = -1$ (mod d) gilt genau dann, wenn $d \in T_{b^i+1}$

Man erhält die Regel:

Eine Zahl a ist genau dann durch ein $d \in T_{b^i+1}$ teilbar, wenn d die alternierende b-adische Quersumme von a teilt.

3.3.1 liefert beispielsweise Teilbarkeitsregeln für:

a) 11 im Dezimalsystem,
b) 13 im Duodezimalsystem,
c) $2, 4, 8$ im Stellenwertsystem mit der Basis $b = 7$.

3.3.2 Gilt $b^2 \equiv -1$ (mod d), so erhält man - wenn man den Begriff alternierende b-adische Quersumme 2. Ordnung einführt - die Regel:
Eine Zahl a ist genau dann durch ein $d \in T_{a,d+1}$ teilerbar, wenn d die alternierende b-adische Quersumme 2. Ordnung von a teilt.

Im konkreten Einzelfall läßt sich die Regel oft noch weiter vereinfachen (vergl. 3.1.3).

3.3.2 liefert beispielsweise Teilbarkeitsregeln für
a) 101 im Dezigalsystem,
b) 5, 29, 145 im Duodezimalsystem,
c) 2, 5, 10, 25, 50 im Stellenwertsystem mit der Basis $b = 7$.

3.3.3. Gilt $b^k \equiv -1 \pmod{d}$, so erhält man:
Eine Zahl a ist genau dann durch ein $d \in T_{3,1}$ teilerbar, wenn d die alternierende b-adische Quersumme 3. Ordnung von a teilt.

3.3.3 liefert beispielsweise Teilbarkeitsregeln für
a) 7, 11, 13, 77, 91, 143, 1001 im Dezigalsystem,
b) 7, 13, 19, 91, 133, 247, 1729 im Duodezimalsystem,
c) 2, 4, 8, 43, 86, 172, 344 im Stellenwertsystem mit der Basis $b = 7$.

3.3.4 Eine Verallgemeinerung für höhere Potenzen der Basis b ist möglich.

4. Tabellarischer Überblick

Ich möchte den Aufsatz beenden mit einer tabellarischen Übersicht über die Teilbarkeitsregeln für die Teiler zwei bis zehn in den Basen zwei bis zehn. Hierbei sind die Endstellenregeln durch die Ziffern 1, 2, 3, die Quersummenregeln durch (1), (2), (3) und die alternierenden Quersummenregeln durch $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 3 \rangle$ entsprechend der Reihenfolge bei der jeweiligen Behandlung gekennzeichnet.

<table>
<thead>
<tr>
<th>Teiler</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>3</td>
<td>2 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>4</td>
<td>2 2 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>5</td>
<td>$\langle 2 \rangle$ $\langle 2 \rangle$</td>
</tr>
<tr>
<td>6</td>
<td>3 3 3 3 3 3 3 3 3 3</td>
</tr>
<tr>
<td>7</td>
<td>3 3 3 3 3 3 3 3 3 3</td>
</tr>
<tr>
<td>8</td>
<td>3 2 2 2 2 2 2 2 2 2</td>
</tr>
<tr>
<td>9</td>
<td>$\langle 3 \rangle$ $\langle 3 \rangle$</td>
</tr>
<tr>
<td>10</td>
<td>3 2 2 2 2 2 2 2 2 2</td>
</tr>
</tbody>
</table>

| Tab. 1. Endstellenregeln: 1, 2, 3 |
| Quersummenregeln: (1), (2), (3) |
| Alternierende Quersummenregeln: $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 3 \rangle$ |
| Kombination dieser Regeln: K |

Wir können der Tabelle entnehmen:

1. Obwohl wir nur die 3 Sonderfälle $b^i \equiv 0 \pmod{d}$ für i = 1 bzw. 2 bzw. 3 (Endstellenregeln), $b^i \equiv 1 \pmod{d}$ für i = 1 bzw. 2 bzw. 3 (Quersummenregeln) und $b^i \equiv -1 \pmod{d}$ für i = 1 bzw. 2 bzw. 3 (alternierende Quersummenregeln) betrachtet haben, können wir so schon direkt bzw. durch Kombination von zwei dieser Regeln - dieser Fall ist in der Tabelle durch K gekennzeichnet - sämtliche Teilbarkeitsregeln für die Teiler zwei bis zehn in den Basen zwei bis zehn erhalten. Man wird sich daher in der Schulpause im wesentlichen mit diesen 3 Sonderfällen begnügen können. Selbstverständlich liefern die 3 betrachteten Sonderfälle nicht sämtliche Teilbarkeitsregeln für beliebige Teiler bzw. Basen. So erhalten wir durch diesen Ansatz beispielsweise keine Teilbarkeitsregeln für den Teiler elf in den Basen zwei bis sieben. In diesen Fällen kann man aber mittels der eingangs als Satz 4 formulierten Kongruenz bei Bedarf Teilbarkeitsregeln ableiten.

3. Betrachten wir die Teilbarkeitsregeln bezüglich eines festen Teilers $d \neq 0$ in Abhängigkeit von der Basis genauer - gehen wir also noch einmal zeilenweise vor -, so erkennen wir eine deutlich ausgeprägte Periodizität. So erhält man für den Teiler zwei abwechselnd die Endstellenregel 1 bzw. die Quersummenregel (1) oder für den Teiler drei abwechselnd zunächst die Quersummenregel (2), dann die Endstellenregel 1 und schließlich die Quersummenregel (1). Die Periodenlänge für den Teiler zwei beträgt also zwei, für den Teiler drei beträgt sie drei, für den Teiler vier beträgt sie vier, für den Teiler sechs beträgt sie sechs, usw.

4. Untersucht man schließlich die Tabelle noch spaltenweise, so kann man schon in diesem Rahmen deutliche Unterschiede in der Eignung der verschiedenen Basen für Teilbarkeitsuntersuchungen erkennen. So kann man beispielsweise in den Basen 6 bzw. 10 die besonders einfachen Endstellenregeln innerhalb des betrachteten Ausschnittes jeweils 6- bzw. 5mal anwenden, dagegen in den Primzahlbasen 5 bzw. 7 nur ein einziges Mal.

Ansprich des Verfassers: Prof. Dr. F. Pudweg, 472 Beckum, Winterweg 51.