PERTURBATION THEOREMS FOR THE
MATRIX EIGENVALUE PROBLEM

L. ELSNER
Fakultät für Mathematik, Universität Bielefeld, Postfach 8640
4800 Bielefeld 1 — Federal Republic of Germany

ABSTRACT. An overview on some recent results concerning perturbations of
eigenvalues of matrices is given.

1. It is well known that the eigenvalues of a matrix depend continuously on the entries of the matrix. For numerical considerations more quantitative statements are required. There are quite a few of them available in the literature, we refer to the books of Householder [13] and Marcus-Minc [14].

In this overview we restrict our attention to some aspects of this topic and present recent results on

— comparisons between certain measures of the distance between spectra
— global bounds for perturbations of spectra
— inclusion theorems for the generalized eigenvalue problem.

2. Let A, B, C, ... denote complex $n \times n$ matrices.
For A, B with spectra $\sigma(A) = \{\lambda_1, ..., \lambda_n\}$ and $\sigma(B) = \{\mu_1, ..., \mu_n\}$ we define as

$$S_A(B) = \max_i \min_j |\lambda_j - \mu_i|$$
the spectral variation of B with respect to A and

$$
\nu(A, B) = \min_{\pi} \max_{i} | \lambda_i - \mu_{\pi(i)} |
$$

the eigenvalue variation of A and B. Here π runs through all permutations of $\{1, \ldots, n\}$.

Besides this the following functions turn out to be useful

$$
h_A(B) = \max \{ S_A(tA + (1-t)B) : 0 \leq t \leq 1 \}
g(A, B) = \max \{ h_A(B), h_B(A) \}.
$$

While $\nu(A, B)$ is the most natural measure of the distance between the spectra the other concepts are introduced because they can be bounded easily and can be related to $\nu(A, B)$.

We observe that the Hausdorff-distance between the sets $\sigma(A)$ and $\sigma(B)$, i.e. $\max \{ S_A(B), S_B(A) \}$ does not compare with $\nu(A, B)$, because for $n > 2$ it can be zero while $\nu(A, B) \neq 0$.

The following inequalities hold:

(2.1) $\nu(A, B) \leq (2n - 1) h_A(B)$

(2.2) $\nu(A, B) \leq a_n g(A, B)$

$$
a_n = \begin{cases} n & \text{if } n \text{ odd} \\
 n-1 & \text{if } n \text{ even} \end{cases}
$$

We note that (2.1) is essentially due to Ostrowski, but the formulation here has the advantage to be sharp, as can be seen from the example $A = \text{diag}(0, 2, \ldots, 2n-2)$, $B = (2n - 1) I_n$ (I_n = identity matrix), $h_A(B) = 1$, $\nu(A, B) = 2n - 1$. (see [6], [7]). The second inequality seems to be new. It is proved in [7], using the marriage-theorem. Also (2.2) is sharp.

This is shown by the examples $A = \text{diag}(2, 4, \ldots, 2k, 0, \ldots, 0)$, $B = (2k + 1) I_n - A$ $n = 2k + 1$ or $n = 2k$ where $h_A(B) = g(A, B) = 1$ and $\nu(A, B) = 2k + 1 = n$ in the case of n odd and $\nu(A, B) = 2k - 1 = n - 1$ in the even case.

The importance of (2.1) and (2.2) lies in the fact that most bounds for $S_A(B)$ available in the literature are also bounds on $h_A(B)$ and $g(A, B)$, hence provide bounds for $\nu(A, B)$. While those obtained by (2.1) are mostly in the literature (as (2.1) is folklore), the bounds via (2.2) are new and improve the known results by a factor of about $1/2$. An example is given in the next chapter.
3. Let us call a bound of $S_A(B)$ or $\nu(A,B)$ global if it depends only on $\|A\|$, $\|B\|$ and $\|A-B\|$, where $\|$ is some matrix-norm.

Historically the first (though not completely fitting into this definition) is Ostrowski's result ([16])

$$S_A(B) \leq (n+2) \left[\max_{i,j} (|a_{ij}|, |b_{ij}|) \right]^{1-1/n} \left(\frac{1}{n} \sum_{i,j} |a_{ij} - b_{ij}| \right)^{1/n}$$

where a_{ij}, b_{ij} are the elements of A and B respectively. Obviously the righthand side is an upper bound for $g(A,B)$, too. The same holds for the bound given in [5]

$$S_A(B) \leq (1 + n^{-1/2}) n^{1/2n} M_n^{1-1/n} \|A - B\|_E^{1/n}$$

where $\|A\|_E^2 = \sum_{i,k=1}^n |a_{ik}|^2$ is the Euclidean matrix norm and $M_n = \max (\|A\|_E, \|B\|_E)$. (3.2) is the version of [6], in [5] the leading factor is slightly larger.

An analogous result for the spectral norm $\| \|$ can be found in [4], (see also [6]).

$$S_A(B) \leq n^{1/n} (2M_2)^{1-1/n} \|A - B\|_2^{1/n} , M_2 = \text{Max} (\|A\|_2, \|B\|_2) ,$$

and in [10], S. Friedland showed that (3.3) holds for any operator norm.

The sharpest result, however, is the following ([9])

$$S_A(B) \leq (\|A\|_2 + \|B\|_2)^{1-1/n} \|A - B\|_2^{1/n}$$

which implies

$$g(A,B) \leq (2M_2)^{1-1/n} \|A - B\|_2^{1/n}$$

Let us give a proof of (3.4):

If $\sigma_1 \leq \ldots \leq \sigma_n$ are the singular values of A, we know that $\|A-B\|_2 \geq \sigma_1$ for any singular B and $\sigma_n = \|A\|_2$. Hence

$$|\det A| = \sigma_1 \ldots \sigma_n \leq \|A - B\|_2 \|A\|_2^{n-1}$$

and upon replacing in (3.6) A by $A - \mu I$, B by $B - \mu I$, where μ is an eigenvalue of B, we get

$$|\det (A - \mu I)| \leq \|A - B\|_2 (\|A\|_2 + \|B\|_2)^{n-1}$$
and noting that \((S_A(B))^n \leq |\Pi (\lambda_i - \mu)| = |\det (A - \mu I)|\) for some eigenvalue \(\mu\) of \(B\), (3.4) follows.

This proof is much shorter and simpler than the proofs in [6] and has the additional advantage of being sharp. In fact, it is shown in [9], that equality holds in (3.4) iff \(A = \varepsilon \| A \|_2 \cdot I\) and \(B\) has an eigenvalue \(-\varepsilon \| B \|_2\) for some \(\varepsilon \in C, |\varepsilon| = 1\). This is done there by giving a slightly longer proof of (3.4) using the Hadamard-inequality for \(\det (A - \mu I)\) and exploiting the additional information in the case of equality.

A similar sharpness result holds for (3.5).

From (3.5) and (2.2) we infer

\[(3.7) \quad \nu(A, B) \leq a_n (2M_2)^{1-1/n} \| A - B \|_2^{1/n}.\]

It has been conjectured by S. Friedland that the factor \(a_n \approx n\) may be replaced by \(1\) or at least a constant independent of \(n\). This seems to be quite a hard problem.

Let us end this chapter by drawing attention to another conjecture, which was formulated by Mirsky 24 years ago:

If \(A, B\) both are normal then it is a consequence of the Bauer-Fike theorem ([1]) that

\[g(A, B) \leq \| A - B \|_2.\]

Mirsky conjectured [15]

\[(3.8) \quad \nu(A, B) \leq \| A - B \|_2.\]

To my knowledge the best result in this direction is given in [3] by Bhatia, Davis and McIntosh:

\[\exists c \text{ independent of } n \text{ such that} \quad \nu(A, B) \leq c \| A - B \|_2,\]

for all \(A, B\) normal. Bhatia and Davis have shown in [2], that (3.8) holds for \(A, B\) both unitary.

4. In this chapter we want to report on some generalizations of classical perturbation theorems to the case of the generalized eigenvalue problem [8]. We prefer to write it in the form

\[(4.1) \quad \alpha B x = \beta A x\]

\((\alpha, \beta) \neq (0, 0) \in C^2\) is an eigenvalue of the matrix pair \(Z = (A, B)\) if
there exists \(x \neq 0 \) s.t. (4.1) holds. We consider \((\alpha, \beta)\) as a point in the projective complex plane with the chordal metric

\[
(4.2) \quad \varphi ((\alpha, \beta), (\gamma, \delta)) = \frac{|\alpha \delta - \beta \gamma|}{\sqrt{|\alpha|^2 + |\beta|^2} \sqrt{|\gamma|^2 + |\delta|^2}}
\]

It is known that if the matrix pair \(Z = (A, B) \), which we view as a \(n \times 2n \) complex matrix, is regular, i.e.

\[
(4.3) \quad \det (A - \lambda B) \neq 0
\]

then it has \(n \) eigenvalues (multiplicities counted in an appropriate way).

If \(W = (C, D) \) is a regular pair with eigenvalues \((\gamma_i, \delta_i), i = 1, \ldots, n\), we may define the spectral variation of \(W \) w.r.t. \(Z \)

\[
S_Z(W) = \max_{i} \min_{j} \varphi ((z_j, \beta_j), (\gamma_i, \delta_i))
\]

and as above analogously \(h_Z(W), g(Z, W), v(Z, W) \).

Having introduced distances between spectra we have to define distances of matrix pairs \(Z, W \). It is not appropriate to use \(||Z - W|| \) for some matrix norm since, for \(T \) nonsingular, \(Z \) and \(TZ = (TA, TB) \) have the same spectrum, hence the spectrum depends only on \(\text{Ker}(Z) \subset C^{2n} \) or on its orthogonal complement \(L_Z = \{Z^T x : x \in C^n\} \).

With

\[
(4.4) \quad P_Z = Z^H (ZZ^H)^{-1} Z
\]

the orthogonal projector onto \(L_Z \), we define the distances

\[
(4.5) \quad d_Z(Z, W) = ||P_Z - P_W||_2
\]

\[
(4.6) \quad d_F(Z, W) = 1/\sqrt{2} \ ||P_Z - P_W||_E
\]

which are metrics on the Grassmann-manifolds \(G_{n, 2n} \) of the n-dimensional subspaces of \(C^{2n} \).

We define a regular pair \(Z \) to be diagonalizable if there exists a basis of eigenvectors of \(Z \). This is equivalent to the statement that there exist nonsingular \(S, T \) such that \(SAT \) and \(SBT \) are diagonal. \(Z \) is called normal if in addition the eigenvectors can be chosen orthonormal i.e. that there exist \(S \) nonsingular, \(T \) unitary such that \(SAT \) and \(SBT \) are diagonal. It can be proved
Theorem 1. If \(Z = (A, B) \) is a diagonalizable pair, \(W \) regular and SAT and SBT diagonal then

\[
(4.7) \quad S_Z(W) \leq \| T \|_2 \cdot \| T^{-1} \|_2 \cdot d_2(Z, W)
\]

This should be compared to the Bauer-Fike theorem [1]:

Theorem 1'. If \(A \) is diagonalizable, \(T^{-1} AT \) diagonal, then for any \(n \times n \)-matric \(C \)

\[
(4.8) \quad S_A(C) \leq \| T \|_2 \cdot \| T^{-1} \|_2 \cdot \| A - C \|_2
\]

The Hoffman-Wielandt theorem ([12]) is the following

Theorem 2'. For \(A, C \) normal with eigenvalues \(\{\lambda_i\}, \{\mu_i\} \)

\[
(4.9) \quad \nu(A, C) \leq \min_{\pi} \left\{ \sum_j |\lambda_j - \mu_{\pi(j)}|^{2^{1/2}} \right\} \leq \| A - C \|_E.
\]

The generalized version is

Theorem 2. Let \(Z, W \) be normal pairs with eigenvalues \((\alpha_i, \beta_i) \) and \((\gamma_i, \delta_i) \). Then

\[
(4.10) \quad \nu(Z, W) = \min_{\pi} \max_i \rho \left((\alpha_i, \beta_i), (\gamma_{\pi(i)}, \delta_{\pi(i)}) \right)
\]

\[
\leq \min_i \left(\sum_j \rho^2 \left((\alpha_i, \beta_i), (\gamma_{\pi(i)}, \delta_{\pi(i)}) \right) \right)^{1/2} \leq d_E(Z, W)
\]

Denote the inverse function of \(x \to x + x^2 + \ldots + x^n \) in \(R_+ \) by \(g_n \) and define

\[
(4.11) \quad S_n(d, r) = \begin{cases}
 r & d = 0 \\
 d \left(g_n(d/r) \right)^{-1} & d, r > 0 \\
 0 & r = 0
\end{cases}
\]

The departure from normality of a matrix \(A \) is defined by \(\Delta(A) = \{ \min \| M \|_2 \mid M \text{ strictly upper triangular}, A = U (\Delta + M) U^H, U \text{ unitary, } \Delta \text{ diagonal} \} \).

Then Henrici has shown ([11]):

Theorem 3'. If \(\Delta = \Delta(A) \) then

\[
(4.12) \quad S_A(C) \leq S_n(\Delta, \| A - C \|_2)
\]
Generalizing the departure from normality, it is possible to define a function \(m (Z) \) such that \(m (Z) \geq 0 \) for all \(Z \) and \(m (Z) = 0 \) iff \(Z \) is normal. Then we can prove

Theorem 3. If \(Z, W \) are regular pairs then

\[
S_Z (W) \leq S_n (m (Z), (1 + m (Z)) d_2 (Z, W)).
\]

In the case that \(Z \) is normal Theorems 1 and 3 both reduce to

\[
S_Z (W) \leq d_2 (Z, W).
\]

We remark that the classical results (Theorems 1', 2', 3') are not special cases of the general results. However they can be obtained via a limiting argument:

For given \(A, C \) consider the regular pairs \(Z_\varepsilon = (I, \varepsilon A), W_\varepsilon = (I, \varepsilon C) \). Applying Theorems 1, 2, 3 to \(Z_\varepsilon, W_\varepsilon \) and letting \(\varepsilon \to 0 \) results in Theorems 1', 2', 3'. This «derivations»-procedure was used previously by Stewart.

Finally let us mention some results on definite pairs.

Here a pair \(Z = (A, B) \) is called a definite pair, if \(A, B \) both are hermitian and

\[
c (Z) = \min \{ \| x^H (A + i B) x \|, x^H x = 1 \} > 0.
\]

It is well known that definite pairs are diagonalizable.
The following result holds

Theorem 4. If \(Z \) is a definite pair and \(W \) is regular then

\[
S_Z (W) \leq \| Z \|_2 (c (Z))^{-1} d_2 (Z, W)
\]

\[
S_Z (W) \leq (c (Z))^{-1} \| Z - W \|_2
\]

For the case of \(W \) definite Stewart obtained a similar result for \(v (Z, W) \), ([17], Thm. 3.2). While Theorems 1, 2, 3 and the first inequality of Theorem 4 are proved in [8], the second inequality of Theorem 4 can be found in [19]. For further results see the overview by Sun [18].
REFERENCES

