Linear Supervised Transfer Learning Toolbox

Paaßen B, Schulz A (2017) : Bielefeld University. doi:10.4119/unibi/2912671.

Download
OA 56.27 KB
OA transfer_learning_v_0.2.0.zip 81.29 KB
OA transfer_learning_v_0.2.1.zip 85.55 KB
Alle
Datenpublikation
Daten vorhanden für diesen Nachweis
Abstract / Bemerkung
This Matlab (R) toolbox provides several algorithms to learn a linear mapping from an n-dimensional source space to an m-dimensional target space, such that it makes a classification or clustering model that has been trained in the source space applicable in the target space. The source space model is assumed to be either a vector quantization model (such as learning vector quantizations and variations thereof, neural gas or k-Means) or a (labelled) mixture of Gaussians. The target space may be any vector space, but this toolbox will typically fail if the relationship between source and target space is highly nonlinear. In contrast, this toolbox is particularly effective if the difference between source and target space can be expressed in terms of simple, linear transformations such as rotations and scalings.
Erscheinungsjahr
PUB-ID

Zitieren

Paaßen B, Schulz A. (2017): Linear Supervised Transfer Learning Toolbox. Bielefeld University. doi:10.4119/unibi/2912671.
Paaßen, B., & Schulz, A. (2017). Linear Supervised Transfer Learning Toolbox. Bielefeld University. doi:10.4119/unibi/2912671
Paaßen, B., and Schulz, A. (2017). Linear Supervised Transfer Learning Toolbox. Bielefeld University. doi:10.4119/unibi/2912671.
Paaßen, B., & Schulz, A., 2017. Linear Supervised Transfer Learning Toolbox. Bielefeld University. doi:10.4119/unibi/2912671
B. Paaßen and A. Schulz, Linear Supervised Transfer Learning Toolbox. Bielefeld University, 2017. doi:10.4119/unibi/2912671.
Paaßen, B., Schulz, A.: Linear Supervised Transfer Learning Toolbox. Bielefeld University (2017). doi:10.4119/unibi/2912671.
Paaßen, Benjamin, and Schulz, Alexander. Linear Supervised Transfer Learning Toolbox. Bielefeld University, 2017. doi:10.4119/unibi/2912671
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-10-19T17:39:37Z
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-10-19T17:39:37Z
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-10-19T17:39:37Z
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-10-19T17:39:37Z

Material in PUB:
Wird zitiert von
An EM transfer learning algorithm with applications in bionic hand prostheses
Paaßen B, Schulz A, Hahne J, Hammer B (2017)
In: Proceedings of the 25th European Symposium on Artificial Neural Networks (ESANN 2017). Verleysen M (Ed); Bruges: i6doc.com: 129-134.
Wird zitiert von
Expectation maximization transfer learning and its application for bionic hand prostheses
Paaßen B, Schulz A, Hahne J, Hammer B (2018)
Neurocomputing 298: 122-133.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar